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Abstract:  

 

The freshwater snail Biomphalaria glabrata is best known as the intermediate host to 

Schistosoma mansoni, a parasitic worm that causes the neglected tropical disease 

schistosomiasis. Because of its role as a host to a parasite, the snail can be used as a model 

organism to study conserved, immune-related pathways and proteins that may be involved in 

defense of parasite infection. One complex of proteins under investigation is nuclear factor 

kappa-light-chain-enhancer (NF-kB), an evolutionarily conserved family of transcription factors 

that are primarily known for their function in vertebrate immunity and, more recently, processes 

related to the nervous system. While NF-kB has been identified in adult B. glabrata, there are no 

studies examining NF-kB localization during the snail’s embryonic development. In 

invertebrates, several studies suggest that NF-kB is a key component in developmental 

processes, making it plausible that B. glabrata utilizes the transcription factor early in its 

lifespan. The combination of NF-kB characterization in adult B. glabrata and evidence of this 

transcription factor’s involvement in the developmental phases of several species of invertebrates 

led me to hypothesize that NF-kB is present and playing an active role during the embryonic 

stages of B. glabrata. In confirmation of this hypothesis, this study presents novel evidence of 

NF-kB localization during B. glabrata embryonic development using immunofluorescence and 

western blotting.   
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Introduction:  

 

The freshwater snail Biomphalaria glabrata is a hermaphroditic organism native to neotropical 

areas in Central and South America (DeJong et al., 2001). Belonging to the phylum Mollusca 

and class Gastropoda (ITIS standard Report Page: Biomphalaria glabrata), B. glabrata is an 

invertebrate typically studied because it is an intermediate host-an organism where an immature 

form of a parasite develops- for Schistosoma mansoni. S. mansoni is a parasitic worm that causes 

the neglected tropical disease schistosomiasis, which affects over 230 million people globally 

and is the second leading cause of death by parasite, behind only malaria. Schistosomiasis is 

characterized by the accumulation of adult S. mansoni within the bloodstream. These 

schistosomes deposit hundreds of eggs in areas such as the liver and digestive tract. These eggs 

cause a granulomatous immune response by the host and the subsequent onset of the disease. A 

portion of the eggs are then eliminated from the body to continue the parasite’s life cycle. Should 

defecation occur in a suitable freshwater area, the eggs will hatch to release miracidia, a larval 

stage suitable for infecting an intermediate snail host such as B. glabrata. The parasite uses the 

snail host to continue its maturation process until it is released into the aquatic environment in 

cercarial form, a free-swimming larval stage of the parasite that can travel from the intermediate 

host to the definitive host. Human contact with freshwater allows for cercariae to penetrate the 

human skin and proceed to infect the body (Fig. 1). The effects of schistosomiasis are severe, 

with infected individuals subjected to symptoms ranging from abdominal pain to liver 

enlargement (Chitsulo et al., 2004, Colley et al., 2014).  
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Currently, there is no available vaccine to treat schistosomiasis. Instead, an orally administered 

drug called praziquantel has become the most widely distributed treatment, with its use 

dramatically increasing since its development in the 1970s due to its efficacy (Doenhoff and 

Pica-Mattoccia, 2006). Even so, the lack of a vaccine has proven to be a substantial roadblock in 

moving the number of schistosomiasis cases each year toward a negative trajectory. Without 

halting the transmission of  S. mansoni in vulnerable populations, or those that use S. mansoni-

 

 
 

Figure 1: Schistosomiasis transmission cycle. In the human host, adult S. mansoni produce eggs that are defecated into a 
freshwater source. Following water contamination, the eggs develop into the larval stage as miracidia and are able to infect 
B. glabrata. The miracidia mature into cercarial form and emerge from the snail into the water, allowing for the parasite to 
infect the human host once exposed. Adapted from Mari et al. (2017).  
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contaminated freshwater for daily activities, many individuals are susceptible to reinfection. 

Because B. glabrata is a host for S. mansoni, the snail has become a model organism for 

studying evolutionarily conserved pathways and mechanisms related to immunity that may be 

involved in defense of parasite infection.  

 

The recent publication of the snail’s genome has supplemented and enhanced studies on B. 

glabrata, providing insight into its immunological pathways (Adema et al., 2017).  Within the 

past two decades, extensive studies have identified various components of the B. glabrata 

immune system, including the characterization of fibrinogen-like proteins, Toll-like receptors 

(TLRs), peptidoglycan recognition proteins, and recently a β pore-forming toxin (Adema et al., 

1997, Galinier et al., 2013, Adema, 2015,  Pila et al., 2016, Adema et al., 2017, Humphries and 

Deneckere, 2018).  One of the most significant findings in identifying B. glabrata immune 

factors emerged in 2011, when Zhang and Coultas identified in adult B. glabrata two 

homologues of the nuclear factor kappa-light-chain-enhancer (NF-kB) family of transcription 

factors known to be involved in the regulation of vertebrate immune response. This spurred 

further investigations on NF-kB and its functionality in adult B. glabrata; however, there is still 

much to be learned about the role this transcription factor plays throughout this snail’s life, 

especially during its early development.  

 

The following study will begin with an analysis of the current knowledge of NF-kB and related 

proteins in B. glabrata as well as the role of NF-kB in invertebrate development. Knowing that 

there is NF-kB localization in adult B. glabrata, and that other invertebrates have expressed NF-

kB during embryogenesis, led us to hypothesize that the transcription factor plays a role in B. 
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glabrata development. Examining when and where NF-kB emerges during the early stages of 

the snail’s lifecycle will provide key insight into the unknown function of this protein in B. 

glabrata and thereby guide future studies on NF-kB in this species. 

 

Background:  

 

NF-kB: Overview  

 

NF-kB proteins are a conserved family of transcription factors that are best known for playing a 

critical role in innate and adaptive immune responses in vertebrates (Li and Verma, 2002, 

Hayden et al., 2006). Transcription factors bind directly to DNA or RNA, allowing them to 

regulate transcription of certain genes depending on the nature of the sequence to which they 

attach. As a whole, NF-kB regulates over 400 genes in humans, many of which are involved in 

immunity. Common functions of NF-kB include regulating apoptosis, enhancing immune cell 

growth and proliferation, and inducing inflammation (Moynagh, 2005, Lawrence, 2009, 

Serasanambati and Chilakapati, 2016), all of which are essential processes in regulating immune 

responses and maintaining cell integrity. Recent studies also have highlighted the importance of 

NF-kB localization in terms of the emergence of, and response to, diseases. While NF-kB is 

clearly important in immunological defense, it is essential that it is functioning properly as it can 

be detrimental when defective. This is mainly due to the fact that many illnesses emerge from 

irregularities in inflammatory response and cellular proliferation, including certain types of 

cancers, arthritis, and muscular dystrophy (Serasanambati and Chilakapati, 2016).  
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The human NF-kB complex contains a total of five subunits that are encoded by distinct genes 

and processed. The subunits of this complex include p50, p52, RelA/p65, c-Rel, and RelB. Note 

that the p50, p52, and p65 proteins are named after their size in kilodaltons (kD). p50, for 

example, is 50 kD, p65 is 65 kD, etc. (Huxford and Ghosh, 2009). While each of these proteins 

may vary in function, all share a conserved 300-amino acid N-terminus called the rel homology 

domain (RHD) that is responsible for DNA binding at target sequences and homo/heterodimer 

formation to facilitate gene regulation (Rushlow and Warrior 1992, Xiao and Gosh, 2005, 

Hayden et al., 2006). p50, p52, RelA/p65, c-Rel, and RelB can be sorted into two classes: NF-kB 

class I (NF-kBI) and NF-kB class II (NF-kBII). NF-kBI comprises p52, p50 and their precursors 

p100 and p105, respectively. p100 and p105 contain a series of C-terminal ankyrin repeats, 

which are degraded to create p52 and p50 (Hatada et al., 1992). The mechanisms behind p50 

production are relatively well characterized, with a glycine-rich segment and downstream 

ubiquitination being known to contribute to p105 processing (Cohen et al., 2001, Moorthy et al., 

2006). On the other hand, NF-kBII is made up of the rel family (RelA/p65, RelB, and c-Rel) 

(Baeurle and Baltimore, 1989, Gilmore, 2006). The rel family is distinguished by each member 

containing a transcription activation domain (TAD), whereas NF-kBI proteins lack this motif 

(Fig. 2). TAD is essential for targeting of gene expression and recruiting proteins that can 

enhance transcription rates, making NF-kBII particularly important in activating NF-kBI 

proteins.  
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Typically, NF-kB proteins remain inactive in the cytoplasm due to being bound by a collection 

of inhibitor proteins called IkBs (Kawai and Akira, 2007). One way NF-kB activation is 

achieved is through TLRs, a family of pattern recognition receptors that can not only identify 

pathogens, but also distinguish and categorize them based on moieties on the pathogen surface 

(Zhang and Ghosh, 2001). In this study, the pathway that NF-kB follows upon activation by 

TLRs will be referred to as the TLR-NF-kB pathway.  

 

Functionally, the TLR-NF-kB pathway in vertebrates is responsible for the transcription of genes 

involved in inflammatory response through direct and indirect means. The pathway induces the 

transcription of pro-inflammatory mediators, such as cytokines, that may subsequently cause 

 

 
 
 
 
Figure 2: The human NF-kB subunits. RHD=rel homology domain, A=ankyrin repeat, TAD= transcription activation 
domain. Edited in BioRender. Adapted from Jost, P. J. and Ruland J. (2007). 
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inflammation themselves or trigger inflammatory T-cell differentiation (Hayden et al., 2011, Liu 

et al., 2017).  

 

Both p50 and p65 are critical subunits in the TLR-NF-kB signaling pathway. It is important to 

note that alone p50 is unable to reach an activated state as it lacks the C-terminal TAD. 

However, other subunits, such as p65, do have this specialized domain (Fig. 2). Therefore, p50 

must function as a heterodimer with p65 to create an activated complex. Together, the pair form 

the most commonly activated NF-kB dimer upon TLR signal induction. Activation of the p50-

p65 heterodimer by TLR stimulation is accomplished by the initial phosphorylation of IkBs by 

the IKK kinase complex, which is made up of IKKa, IKKb, and a NF-kB essential modifier 

(NEMO). IkB phosphorylation is followed by ubiquitination, or the attachment of a ubiquitin 

molecule to a protein that signals for the enzymatic degradation of the particular substance to 

which it is bound. Thus, following ubiquitination, IkB degrades and detaches from the p50-p65 

heterodimer, allowing the complex to migrate to the nucleus to bind at specific DNA sequences, 

called kB domains, and regulate transcription (Fig. 3; Hayden et al., 2006, Kawai and Akira, 

2007).  
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NF-kB functionality beyond immunity 

 

While NF-kB is best known to regulate immune responses across a multitude of species (Hayden 

et al., 2006), studies have found that its functions may not be limited to the immune system. In 

addition to regulating immune responses, the TLR-NF-kB pathway has been shown to play a 

role in development. As of yet, there is no published research on the TLR-NF-kB pathway 

during molluscan development; however, several studies have emerged examining TLR and NF-

kB activity during invertebrate maturation. In fact, the Toll gene, a Drosophila TLR homologue, 

 

 
 

 
 
Figure 3: The TLR-NF-kB pathway. TLR binding to a pathogen substrate induces the IKK complex to phosphorylate (P) 
IkB, an inhibitor bound to the p50-p65 heterodimer. Ubiquitination (Ub) and subsequent degradation of IkB allows p50-p65 to 
migrate to the nucleus and regulate transcription by binding to a kB domain. Created through BioRender. Adapted from 
Abcam “Overview of the NF-kB pathway.” 
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was first investigated for its role in the early stages of Drosophila development. It was not until 

later that it was also found to be involved in immunity. Drosophila studies also have indicated 

that a NF-kB homologue, Dorsal, plays a role in the development of the dorsal-ventral pattern of 

embryonic flies (Hong et al., 2008, Gerondakis and Siebenlist, 2010, Anthoney et al., 2018). 

Evidence of the TLR-NF-kB pathway functioning in development extends to other invertebrates 

as well, with the identification of a singular TLR in Nematostella vectensis (Nv-TLR) being 

found to colocalize with NF-kB in young embryos, confirming that TLRs and NF-kB function in 

similar areas.  Nv-TLR was also the activator of N. vectensis NF-kB in human cells (Brennan et 

al., 2017), suggesting the pathway is conserved across species.  

 

In addition to the role of NF-kB in development and immunity, over the past 25 years there has 

been significant evidence suggesting that NF-kB serves a wide variety of functions in the 

vertebrate nervous system. Notably, NF-kB has been found to be involved in neural stem cell 

proliferation, brain inflammation, neuronal upkeep, and synaptic functions (Kaltschmidt and 

Kaltschmidt, 2009). Specifically, members of the TLR-NF-kB pathway have been identified in 

both developing and adult mice nervous systems. In adults, p50 localized in retinal synaptic areas 

and p65 was found in several areas of the brain (Kaltschmidt et al., 1993, Meberg et al., 1996, 

Meffert et al., 2004, Kaltschmidt and Kaltschmidt, 2009, Fan and Cooper, 2009). Similarly, NF-

kB was shown to be present in the midbrain of the developing central nervous system (CNS) in 

embryonic mice (Dickson et al., 2004), suggesting that NF-kB functioning as an immune and 

neurological regulator may begin in early organismal development.  
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NF-kB and B. glabrata studies 

 

Research in infectious diseases has explored NF-kB regulation in pathogen-host relationships, 

including hosts infected with S. mansoni. Specifically, once in the human body, excretory 

products of S. mansoni have been found to inhibit NF-kB proteins from binding to certain kB 

domains that regulate inflammatory responses, resulting in the termination of immune cell 

recruitment and weakened host defense to pathogens (Trottein et al., 1999, Tato and Hunter, 

2002). Further, a 2015 study on S. mansoni-infected mice found that NF-kB and TLR levels 

were significantly elevated during the host’s immune response to the parasite. As a result, NF-kB 

is being examined as a therapeutic target for future anti-schistosomiasis drug development 

(Ashour et al., 2015). However, there is still much to be learned about NF-kB in B. glabrata as a 

whole before determining its role in parasite defense.  

 

Given the critical role of B. glabrata as an intermediate host in the S. mansoni lifecycle and the 

importance of NF-kB in parasite-host interactions, it is of great interest to fully examine the 

possible functions and localization of the TLR-NF-kB pathway in B. glabrata. While portions of 

the TLR-NF-kB pathway have been characterized in mollusks (Montagnani et al., 2004, 

Goodson et al., 2005, De Zoysa et al., 2010), Zhang and Coultas (2011) were the first to identify 

and characterize NF-kBI and II in adult B. glabrata specifically. This ultimately ignited further 

investigation of NF-kB in the snail. Most importantly, however, their identification of NF-kBI 

and II pointed to the likelihood of the entire TLR-NF-kB pathway being in B. glabrata. Thus, in 

subsequent years following the publication of Zhang and Coultas’ study, several putative 

portions of the TLR-NF-kB pathway were discovered in adult B. glabrata including TLRs and 
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kB domains (Humphries and Harter, 2015,  Adema et al., 2017, Humphries and Deneckere, 

2018).  

 

From recent studies on NF-kB in adult B. glabrata, it can be hypothesized that NF-kB does in 

fact serve some kind of function in the immune and nervous systems in the snail as it does in 

vertebrates. Research conducted by Humphries and Harter (2015) identified several kB domains 

in B. glabrata to which the RHD of the B. glabrata p65 homologue bound to. Uniquely, these 

particular kB domains were found just upstream of the p38 mitogen–activated protein kinase 

(MAPK) and IkB. p38 MAPK is one of several subgroups in a family of kinases that are 

involved in signal transduction regulation, inflammation, and NF-kB processing (Zarubin and 

Han, 2005). It has been determined that p38 MAPK regulates acetylation of p65, or the addition 

of an acetyl group to a protein to facilitate its activity (Saha et al., 2007). NF-kB binding to 

domains upstream of these immune-related genes ultimately suggests that the transcription factor 

likely serves a related function in immunity in B. glabrata. Because the function of NF-kB in 

vertebrates is well characterized as having a regulatory effect on immunity, it is important to note 

that the B. glabrata RHD of p65 was able to bind to vertebrate kB domains as well. This 

suggests that the process of p65, and possibly other NF-kB proteins, binding with kB domains is 

conserved across species (Humphries and Harter, 2015). Later research in the Humphries Lab 

further supported this initial finding, with identification of several additional kB domains 

upstream of several members of the TLR-NF-kB pathway, suggesting that NF-kB may be 

regulating a portion of that pathway (Humphries and Deneckere, 2018). While there have not 

been any investigations of NF-kB functionality in the B. glabrata CNS, preliminary 

immunochemical studies of p50 showed immunoreactivity in the adult B. glabrata brain (Judith 
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Humphries, PhD, personal communication), suggesting that p50 may be active in the snail’s 

CNS as it is in other species. 

 

As studies on the TLR-NF-kB pathway in B. glabrata continue to accumulate and suggest that it 

may serve immunological and neurological functions in the snail, it is important to note that this 

research has only been conducted in adult B. glabrata, leaving NF-kB localization during 

embryogenesis unstudied. Thus, there is a gap in our understanding of whether NF-kB functions 

in B. glabrata embryos, and if so, how.  

 

B. glabrata embryonic development:  

 

There are few published studies documenting the stages of B. glabrata embryogenesis. To date, 

the most thorough analysis of the snail’s development comes from the research of Camey and 

Verdonk (1970). However, certain details of B. glabrata growth, particularly later embryonic 

stages, were absent from this study and must instead be characterized by conserved patterns of 

embryogenesis in related gastropods that have been more extensively studied, such as Lymnaea 

stagnalis. Like B. glabrata,  L. stagnalis is an intermediate host for parasites and can be used as a 

model organism to fill gaps of knowledge in B. glabrata embryogenesis (Kuroda and Abe, 

2020). For the purposes of this study, however, all analysis of snail embryogenesis will be 

specific to B. glabrata until otherwise noted.  

 

As in other pond snails, development of B. glabrata begins with the initial laying of egg masses, 

characterized by clusters of embryos in individual chambers (Croll, 2009). The embryos will 
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grow and develop for 6-7 days before undergoing metamorphosis and emerging from their 

chambers in young-adult form. Between the time of fertilization and leaving the egg mass, B. 

glabrata embryogenesis is characterized by five distinct developmental stages: blastula, gastrula, 

trochophore, veliger, and finally juvenile. To supplement and enhance the work of Camey and 

Verdonk (1970), Lulu Bautista-Ruiz of the Humphries lab documented and photographed these 

stages of embryonic development in B. glabrata (Fig 4).   

 

The blastula stage is the first period of B. glabrata development and occurs during the initial 0-2 

days following fertilization when the egg masses are laid. This stage is characterized by notable 

cleavage of cells, beginning with the initial splitting of the single-celled egg (Fig. 4A). After at 

least three series of cell division, the embryo transitions into the gastrula phase around day 2 

post-fertilization. It is during this stage that the cells are seen in distinct germ layers, which are 

visually identified by a contrast in cell density and therefore color when observing the embryo. 

Further, the blastopore, or the initial embryonic opening that creates the anus or mouth in an 

organism, can also been seen during gastrula (Fig. 4B). During days 2-3 of development, the 

embryos enter the trochophore stage. There are two notable events that occur during this time of 

development. The first is the emergence of the visceral mass, which will later develop into the 

snail’s organs. The second is that the embryos express movement for the first time in the form of 

stationary revolutions in their chambers (Fig. 4C).  

 

Following the trochophore stage, B. glabrata embryos undergo the second to last stage of  

embryogenesis, the veliger. The veliger stage occurs over a longer period of time compared to 

other stages as it lasts between days 4-6 of development. This prolonged time of development 
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can be divided into three stages: early, middle (mid), and late veliger. During early veliger, in 

addition to the growth of the visceral mass, the beginnings of the shell, the radula, or feeding 

organ, and the headfoot region begin to form. The headfoot comprises the muscle tissue by 

which the snail moves, the “foot,” as well as the sensory organs that make up the “head,” such as 

the eye spots, tentacles, and the CNS. However, in early veliger, the headfoot is only just 

becoming visible as a uniform, translucent shape protruding from the visceral mass. There are 

minimal differences between early and mid-veliger, as mid-veliger mainly consists of the growth 

and elongation of the headfoot, shell, and visceral mass. An indicator of the transition from early 

to mid-veliger, however, is the initial budding of the tentacles that will later grow into long, thin 

structures used for environmental and spatial sensing. The final portion of the veliger stage, late-

veliger, is characterized by enhanced distinctiveness between the shell and headfoot. The 

tentacles continue to protrude from the headfoot near the shell opening, and the eye spots, 

although not visible in Figure 4D, also develop at the base of the tentacles (Fig. 4D). B. glabrata 

embryogenesis concludes with the juvenile stage, occurring between 6-7 days post-fertilization. 

Camey and Verdonk did not characterize B. glabrata embryos at this stage; however, 

observations of the snail show similar characteristics to juvenile L. stagnalis. The snail grows to 

fill most of the chamber and darkens in color. The juvenile looks similar to a young adult with a 

prominently defined shell and headfoot (Fig. 4E, F) and is ready to hatch during this time period 

(Boyce et al., 1967, Camey and Verdonk, 1970, Bautista-Ruiz, 2020).  
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Figure 4: Developmental stages of B. glabrata. (A) Initial cell cleavages during the blastula stage. Note that not all series of division 
that may occur during this stage are documented. (B) Gastrula embryo. (C) Trochophore embryo. (D) Veliger stages: Embryos marked 
as “early,” “mid,” and “late” veliger phase. (E) Juvenile embryo immediately prior to hatching. Newly post-embryonic B. glabrata are 
noted as young-adults (F) and fully mature snails are deemed as adults (G). B=blastopore. VM=visceral mass. HF=headfoot. S=shell. 
T=tentacle. E=eye spots. Figures A-E adapted and complied from Bautista-Ruiz (2020). Figure F adapted from Araújo et al. (2020). 
Figure G adapted from Kenny et al. (2016). Completed and compiled figure constructed in BioRender. 
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Investigative Approach: 

 

Studies on NF-kB in B. glabrata have been limited despite advances made in characterizing 

various components in the TLR-NF-kB pathway over the past decade (Zhang and Coultas, 2011, 

Humphries and Harter, 2015, Adema et al., 2017, Humphries and Deneckere, 2018). This is 

especially true in regard to investigations of NF-kB during B. glabrata embryonic development. 

In fact, there has yet to be any identification or research to emerge on whether the TLR-NF-kB 

pathway is active during the gastropod’s early life stages. However, the combination of known 

NF-kB expression in adult B. glabrata and evidence of NF-kB in early invertebrate development 

catalyzed the aim of this study-to investigate possible NF-kB localization and functionality 

during B. glabrata embryogenesis for the first time and therefore increase knowledge of this 

transcription factor during the snail’s early life.   

 

To conduct this study, a custom antibody was created in rabbits against the N-terminus of 

p105/50 (Pacific Immunology, Ramona, CA), one of the characterized NF-kB proteins in B. 

glabrata. While p50 is the proteolytic product of p105 (Gilmore, 2006), both p105 and p50 

contain the same N-terminal antigen (Fig. 2), making p105/50 a target for the antibody alike. 

Specifically, the p105/50 antigen represents the N-terminal amino acids 2-22 

(SSYGSSSNDSDTLNENNLPVD-cys). While this sequence was obtained from adult B. 

glabrata, it is assumed that if present in embryos the p105/50 sequence would be the same 

(Kenny et al., 2016), suggesting that the p105/50 antibody would precisely detect p105/50 in 

developing B. glabrata. Using a lab population of B. glabrata embryos of the BS-90 strain 
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ranging from 0 days old (immediately post-fertilization) to 7 days old (immediately prior to 

hatching) were collected as the experimental groups. Rather than separate embryos by individual 

days of development, the snails were deemed to be 0-1 days, 1-2 days, 2-3 days post-

fertilization, etc. as it was impossible to determine the exact time that the snails laid the egg 

masses. However, it is important to note that each group of embryos was in a similar stage of 

development regardless and categorizing them in this way effectively captures embryogenesis in 

its entirety. Two primary methods, immunofluorescence and western blotting, were used to 

investigate possible p105/50 localization and expression at each stage of development.  

 

The approach used for immunofluorescence in this study followed a typical protocol for indirect 

immunofluorescence. While direct immunofluorescence entails the direct binding of a 

fluorophore-tagged antibody to a protein of interest (Fig. 5), in indirect immunofluorescence, 

embryos are first treated with a primary antibody to bind to the desired target and are later 

incubated with a secondary antibody containing a fluorescent tag to allow for microscopic 

visualization of immunoreactivity (IR; Fig. 5). The main benefit of using immunofluorescence is 

that the spatial location of a protein’s IR can be observed, which can help identify the function of 

the protein, as well. In an attempt to determine if p105/50 localized in certain areas of B. 

glabrata embryos, additional reagents known to target structures such as muscle and 

photoreceptors were therefore utilized. 

 



 21 

Further, western blotting was used to supplement any p105/50-IR seen. Importantly, western 

blotting can ensure that the p105/50 antibody is binding to the correct protein by showing a band 

at the expected weight of the cleaved p105 subunit (50kD).   

 

This experimental study will investigate NF-kB localization and expression in early B. glabrata 

development and provide a foundation for future research that will investigate more thoroughly 

not just the purpose of NF-kB during the embryonic portions of the snail’s life cycle, but also 

 

 
 

 
Figure 5: Schematic of indirect vs direct immunofluorescence. In indirect immunofluorescence (left), the protein 
of interest is initially bound to its corresponding primary antibody. A fluorescent secondary antibody is then 
attached to the primary antibody to allow for microscopic visualization. In direct immunofluorescence (right), a 
fluorescent antibody is bound directly to the protein of interest. Created in BioRender. 
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how its expression and function change over time. This enhanced knowledge regarding the 

localization and functionality of B. glabrata NF-kB will support future studies investigating the 

possible role of NF-kB in other mollusks.  

 

Methods  

 

Collection and isolation of B. glabrata embryos 

 

A population of BS-90 B. glabrata snails were kept at a temperature of 26°C on a 12-hour 

light/dark cycle in shallow glass dishes filled with artificial pond water (1.25mM CaCO3, 

3.75mM MgCO3, 5.25mM NaCl, and 0.75mM KCl in aged tap water). The snails were fed 

romaine lettuce ad libitum and the tanks were cleaned once a week.  To collect embryos, a small 

piece of polystyrene (~1x1in) was placed in the dish as a substrate for egg laying and then 

monitored for the presence of eggs every 12 hours. Once laid, egg masses were placed in a 

separate dish of artificial pond water and left to develop. At the desired stage of development, 

between 0-7 days post-laying, the egg masses were removed from the polystyrene using a scalpel 

and then placed in a petri dish containing artificial pond water. While viewing with a Nikon 

SMZ745 dissection microscope (Nikon Instruments Inc., Melville, NY), individual embryos 

were isolated from the egg masses using beading needles. Isolated embryos were then treated 

according to immunofluorescence or western blotting protocols  
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Immunofluorescence  
 
 
To determine if p105/50 was present in B. glabrata embryos, indirect immunofluorescence was 

used as a primary method for visual observation of p105/50-IR. Isolated embryos to be used for 

indirect immunofluorescence were fixed in 4% paraformaldehyde (PFA) in phosphate buffered 

saline (PBS, 0.14M NaCl, 2.7mM KCl, 10mM NaH2PO4, 1.8mM KH2PO4 , pH 7.4) for 

approximately 2 hours at 4°C. Following fixation, embryos were washed once with 4% Triton X-

100 (TX) in snail PBS (sPBS; 8.41mM Na2HPO4, 1.65mM NaH2PO4, 45.34mM NaCl, pH 7.4) 

and then stored in sPBS at 4°C for future use. 

 

Two primary antibodies were used for indirect immunofluorescence; one against B. glabrata 

p105/50 and another against rhodopsin. The first was a custom antibody against the N-terminus 

of B. glabrata p105/50 that was produced in rabbits (Pacific Immunology). Specifically, the 

antigen was amino acids 2-22 (SSYGSSSNDSDTLNENNLPVD-cys) and serum was affinity 

purified prior to use. The second antibody was anti-rhodopsin (Cosmo Bio Co., Carlsbad, CA), 

which was previously reported to successfully bind rhodopsin in another freshwater snail L. 

stagnalis (Takigami et al., 2014). For each antibody, working concentrations were optimized for 

anti-p105/50 and anti-rhodopsin reagents; however, the protocols for indirect 

immunofluorescence were otherwise identical.  

 

Prior to incubation with antibodies, 5-7 day old embryos were treated with 0.5% trypsin from 

porcine pancreas (Sigma-Aldrich, St. Louis, MO) in sPBS for 1 minute, and were subsequently 

washed 4 X 15 minutes with 4% TX in sPBS (sPBS-TX). Embryos younger than 5 days, which 

are structurally more fragile than their older counterparts, were not treated with 0.5% trypsin. 
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Regardless of the stage of development, all embryos were subsequently incubated in 5% bovine 

serum albumin (BSA; Sigma-Aldrich) in sPBS, overnight at 4°C. 5% BSA served as the primary 

blocking diluent throughout the experiment unless otherwise noted and prevented nonspecific 

antigen binding.  

 

Following blocking, embryos were incubated in either anti-p105/50 (Pacific Immunology; 

0.5µg/mL) or anti-rhodopsin (Cosmo Bio Co.), which was diluted according to the 

manufacturer’s recommendations (1:4000) as the concentration of the antibody was not 

provided. Embryos incubated with anti-p105/50 or anti-rhodopsin antibodies overnight at 4°C 

and were then washed 4 X 15 minutes in sPBS-TX. Following washing, embryos were incubated 

with a fluorophore-tagged secondary antibody, anti-rabbit Alexa 488-conjugated IgG (Cell 

Signaling Tech., Boston, MA; 1:2000), and protected from light overnight at 4°C. The next day, 

the embryos were again washed 4 X 15 minutes in sPBS-TX and mounted onto glass slides with 

Vectashield mounting medium (Vector Laboratories Inc., Burlingame, CA). 

 

As a control, embryos were not treated with any primary antibody and were instead only 

incubated with anti-rabbit Alexa 488 with otherwise the same protocol. This control supports the 

specificity of any observed IR as it determines whether the secondary antibody bound only to 

primary antibodies (anti-p105/50 and anti-rhodopsin) or to tissue directly.  

 

In addition to anti-p105/50 and anti-rhodopsin antibody treatments, which used indirect 

immunofluorescence methods, embryos were also incubated with Alexa Fluor 555-conjugated 

phalloidin (Cell Signaling Tech.), an actin-binding reagent. All embryos were subjected to the 
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same initial trypsin and blocking treatments as the embryos incubated with primary antibodies, 

however, as phalloidin is directly tagged to Alexa Fluor 555, a secondary reagent was not 

required. Therefore, embryos were incubated in Alexa Fluor 555 phalloidin in sPBS (1:20) at 

room temperature for 15 minutes, washed 1 X 15 mins with sPBS, and subsequently mounted 

onto glass slides with Vectashield mounting medium (Vector Laboratories Inc.) for viewing. 

 
All treated embryos were viewed using a Leica DM1000 LED microscope and imaged using a 

Leica TCS SP5 II confocal microscope (Leica Microsystems Inc., Buffalo Grove, IL).1 

 

Western Blotting 

 

In addition, western blotting was used to determine whether p105/50 is expressed during 

embryonic development and to further support any p105/50-IR seen though 

immunofluorescence. Isolated embryos to be used for western blotting were homogenized in 

sPBS and centrifuged at 13,200 rounds per minute (rpm) for 2 minutes at 4°C. The supernatant 

was then collected and stored at -80°C for future use.  

 

Samples of B. glabrata embryos between 2-7 days of development were collected and isolated as 

described above. In addition to embryos, two controls were utilized. The first was created using a 

sample of adult B. glabrata tissue, which is known to express p105/50 (Zhang and Coultas, 

2011). The headfoot of an adult BS-90 snail was homogenized in sPBS and subsequently 

centrifuged at 13,200 rpm for 2 minutes at 4°C. The supernatant was then collected and stored at 

                                                
1 For details regarding the settings used for image acquisition, see Appendix I: Methods Expanded.  
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-80°C for future use. To confirm the specificity of the p105/50 antibody being used, an 

additional control group was created using a recombinant B. glabrata p105/50 protein.2 To 

measure the levels of protein in each sample, a BCA protein assay was carried out according to 

the manufacturer’s instructions (Pierce BCA Protein Assay Kit, Thermo Scientific, Waltham, 

MA).3 A BCA protein assay assisted in assuring that the same amount of protein was loaded into 

each well of the gel. Thus, p105/50 expression could be monitored throughout development by 

examining changes in band intensity between each sample; if band intensity varied, differences 

in total protein concentration could be eliminated as the cause.   

 

In preparation for SDS-PAGE, 2-7 day embryonic, adult, and purified recombinant p105/50 

protein samples were thawed over ice. 10µg total protein in embryonic and adult samples and 

2.5µg total protein in  recombinant p105/50 protein samples were mixed with 2x Laemmli 

sample buffer (Bio-Rad, Hercules, CA) and boiled at 95°C for 5 minutes in an Eppendorf 

thermal cycler (Sigma Aldrich). Samples were subsequently cooled on ice to room temperature. 

SDS-PAGE was conducted by loading samples into a 10% Mini-PROTEAN TGX Precast 

Protein Gel (Bio-Rad) and run in 1x running buffer (25 mM Tris, 192 mM glycine, 0.1% SDS, 

pH 8.3) within a Mini-PROTEAN Tetra cell (Bio-Rad). Following SDS-PAGE, the protein was 

transferred onto a nitrocellulose blotting membrane (GE Healthcare, Marlborough, MA) in 1x 

transfer buffer (25 mM Tris, 129 mm glycine, 20% methanol, pH 8.3). Following, the membrane 

was blocked in 5% BSA in 0.1% tween-tris-buffered saline (TBS-T; 200 mM Tris, 1.5 M NaCl, 

pH 7.6) overnight at 4°C. The following day, the membrane was incubated with p105/50 

                                                
2 For details regarding the creation of the purified B. glabrata p105/50 purified protein, see Appendix I: Methods 
Expanded 
3 For further information regarding the methodology of the BCA protein assay, see Appendix I: Methods Expanded.  
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antibody in 5% BSA in 0.1% TBS-T (10µg/mL) and gently rocked for 2 hours. After primary 

antibody incubation, the membrane was washed with 0.1% TBS-T 2 X 15 minutes. Next, a 

secondary solution of anti-rabbit IgG AP-linked antibody (Cell Signaling Tech.) in 5% BSA in 

0.1% tween-TBS (1:7500) was added to the membrane and was left to rock for 1 hour. Once 

again, the membrane was washed with 0.1% tween-TBS 2 X 15 minutes. After secondary 

incubation, the membrane was briefly rinsed with alkaline phosphatase buffer (AP buffer; 

100mM Tris-HCl [pH 9.0], 150 mM NaCl, 1mM MgCl2) before being treated with a solution of 

5-bromo-4-chloro-3-indolyl-phosphate/nitro blue tetrazolium (BCIP /NBT) development 

substrate (Promega, Madison, WI) in AP buffer.4 The membrane was left to develop until bands 

became visible near 50 kD that would correspond to p50, the cleaved form of p105. 

 

Results 

 

p105/50 and rhodopsin immunofluorescence B. glabrata  

 

The aim of this study was to examine whether p105/50 is expressed during B. glabrata 

development through immunofluorescence and western blotting. Utilizing immunofluorescence, 

embryos were examined for p105/50-IR at 0-7 days post-laying. There was no noticeable 

p105/50-IR in earlier stages of embryonic development, specifically prior to 4 days post-laying 

(Fig. 6A-D). However, beginning at 4 days of development, p105/50-IR was observed in the 

                                                
4 For information regarding the creation of the BCIP /NBT development substrate, see Appendix I: Methods 
expanded.  
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snail’s eye spot (Figs. 6E, 10A). At this stage of development, however, there was no 

distinguishable p105/50-IR outside of the eye spot. Beginning at 5-6 days of development, the  

 

 
 

 
 
Figure 6: Confocal images of 0-5 day B. glabrata embryos treated with anti-p105/50 antibody. (A) 0-1 day embryo. 
(B) 1-2 day embryo. (C) 2-3 day embryo. (D) 3-4 day embryo. (E) Green=p105/50-IR in a 4-5 day embryo. e=eye. 
r=radula. Dashed line indicates edge of specimen. (A-D) exhibited no specific p105/50-IR. 4-5 day embryos in (E), 
however, consistently showed p105/50-IR patterns in the eye spots. All p105/50-IR patterns presented were observed 
in at least 20 embryos between 4-5 days of development.  
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eye spot became more distinguishable by the development of pigmented cells encircling the 

center of the eye, which continued to express strong p105/50-IR (Figs. 7, 10B). In addition to 

p105/50-IR within the eyespot, at 5-6 days of development p105/50-IR localized in 

immunoreactive structures within the headfoot region. These structures were typically found 

between the two eyespots and near the anterior of the headfoot (Fig. 7).  Another structure 

showing p105/50-IR in 5-6 day embryos was a thin, elongated shape that extended from the edge 

of the shell opening, stopping approximately between the eye spots (Fig. 7).5 

 

Localization of p105/50-IR in the eye spot continued into later stages of development, with 6-7 

day embryos exhibiting fluorescence in the eyes as well (Figs. 8, 10C). In addition to 

fluorescence in the eye spot, notable p105/50-IR in 6-7 day embryos was seen in large structures 

that were clustered together just beneath the shell-headfoot interface (Fig. 8). Further, another 

structure demonstrating p105/50-IR in 6-7 day embryos was an elongated line of fluorescence 

beginning at the opening of the shell (Fig. 8A), which was also observed in 5-6 day embryos 

(Fig. 7). This structure was seen to extend further along the headfoot region than in 5-6 day 

embryos because it stretched to the edge of the specimen rather than stop between two eye spots 

near the radula (Fig. 7). In a ventral layer of tissue near the bottom of the headfoot, p105/50-IR 

was also observed in elongated lines crossing obliquely with the appearance of muscle (Fig. 9). 

This pattern of IR was observed throughout a majority of the headfoot region in 6-7 day embryos 

(Fig. 9A), however, the p105/50-IR was most prominent and clear in the area between the radula 

and eyespot (Fig. 9B). 6 

                                                
5 For an additional image of a 5-6 day embryo expressing p105/50-IR, see Appendix II: Supplementary 
Immunofluorescence Images 
6 For additional images of 6-7 day embryos expressing p105/50-IR, see Appendix II: Supplementary 
Immunofluorescence Images 
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Figure 7:  p105/50-IR in a 5-6 day B. glabrata embryo. e=eye spot. r=radula. Green=p105/50-IR. White 
light (WL) confocal images and p105/50-IR confocal images were merged to produce a single composite 
image. Dashed red line follows the path of a thin structure extending half the length of the headfoot region 
and ending between the eye spots. Red and blue boxes indicate additional immunoreactive structures. All 
p105/50-IR patterns presented were observed in at least 30 embryos between 5-6 days of development.  
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Figure 8: p105/50-IR in a 6-7 day B. glabrata embryo. e=eye spot. r=radula. Green=p105/50-IR. (A) White light (WL) 
confocal images and p105/50-IR confocal images were merged to produce a single composite image. Dashed red line follows 
the path of a thin structure extending the length of the headfoot between the eye spots. Immunoreactive structures indicated by 
red box and magnified. (B) Max projection of magnified immunoreactive structures.  
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Figure 9: Lower layers of 6-7 day embryonic B. glabrata tissue expressing p105/50-IR. e=eye. r=radula. Green=p105/50- 
IR. White light (WL) confocal images and p105/50-IR confocal images were merged to produce a single composite image. 
Note that the eyespot does not show active p105/50-IR in same layer as muscle-like localization in the images. (A) Headfoot 
region of a 6-7 day embryo expressing p105/50-IR. (B) Tissue surrounding the eye spot of a 6-7 day embryo expressing 
p105/50-IR. 
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One of the most prominent and consistent findings from this study was the localization of 

p105/50-IR in the eye spots of embryos between 4-7 days of development. Results showed that 

prior to 5 days of development the eye spots were difficult to recognize when viewed under only 

white light, as there was no pigment surrounding the eye; rather, there was a small, concave area 

in the tissue, indicated by a white-dashed circle in Fig. 10A, that served as the only marker of the 

eye spot. After 5 days of development, however, a dark pigment was observed in the periphery 

of the eye and the eye spot grew in size, making it one of the most recognizable organs in the 

embryo (Fig. 10B, C).  

 

Because p105/50-IR was seen in the eye spot of older embryos, it was of interest to confirm and 

investigate the presence of p105/50 in optical function and related pathways. Rhodopsin, which 

is a photopigment found in the retina of many animals, can be used as an indicator of 

photoreceptive tissue localization and therefore the eye spot. Treatment of 6-7 day embryos with 

anti-rhodopsin antibody showed rhodopsin-IR within the eyespots of embryos as well as a 

structure adjacent to the left eyespot that reached from the inside of the shell to the edge of the 

headfoot region (Fig. 11A, B, C). Closer inspection of this shape in 6-7 day embryos revealed an 

oval-shaped patch of rhodopsin-IR at headfoot end of the structure (Fig. 11B).  
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Figure 10: Development of B. glabrata eye spots exhibiting p105/50-IR. Green=p105/50-IR. p105/50-IR and white light (WL) 
confocal images were merged to produce a composite image. (A) 4-5 day embryo eye spot lacking dark pigment surrounding the 
area of p105/50-IR. White dashed circle indicates indent of the early eye spot. (B) 5-6 day embryo eye spot with surrounding dark 
pigment. (C) 6-7 day embryo eye spot with dark pigment surrounding the periphery of the eye. 
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Figure 11: Rhodopsin-IR in 6-7 day B. glabrata embryos. Green=rhodopsin-IR. (A) Pair of embryos expressing 
rhodopsin-IR. le= left eyespot. re=right eyespot. Elongated, tube-like structures indicated by white arrows. Red box 
captures end of this structure, which is magnified in (B). (C) Structure expressing rhodopsin-IR traced by a dashed red 
line from the headfoot into the shell. (D) Merged white light (WL) and rhodopsin-IR confocal image of a magnified eye 
spot expressing rhodopsin-IR. Rhodopsin-IR patterns presented were observed in at least 30 embryos between 6-7 days of 
development.  
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As both the anti-p105/50 and anti-rhodopsin antibodies were produced in rabbits, each reagent 

was used individually and a dual-labelling protocol was omitted. Side-by-side viewing of the 

eyespots of 6-7 day embryos at a higher magnification revealed rhodopsin-IR and p105/50-IR in 

strikingly similar areas at the center of the eye spot with dark pigmentation at the periphery of 

the fluorescence (Fig. 12). Additionally, closer inspection of rhodopsin-IR in B. glabrata eye 

spots showed fluorescence that was also circling the pigmented area (Fig. 12A). 

 
 
 

p105/50 and phalloidin localization in muscle-like tissue 

 

As p105/50-IR was observed in what appeared to be muscle-like tissue, phalloidin Alexa 555, which is an 

actin-binding fluorescent reagent, was used to characterize this tissue as actin is an integral protein in 

muscle. Because of concern that there might be overlap between the emission spectra of Alexa 555 and 

anti-rabbit Alexa 488, embryos were treated separately with each reagent and localization patterns were 

 

 
 

Figure 12: Juvenile B. glabrata eye spots. Merged p105/50-IR or rhodopsin-IR and WL images. (A) 
Green=rhodopsin-IR. (B) Green=p105/50-IR. Note that images are not max projections and capture a lower layer of 
the eye spot. 
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compared. Both p105/50-IR and phalloidin localized in the form of lines crossing obliquely in a similar 

region between the radula and the right eye (Fig. 13). 

 

Control Groups 
 
 
To confirm that the observed p105/50-IR and rhodopsin-IR seen were specific, embryos were incubated 

with only anti-rabbit Alexa 488 (secondary treatment). Secondary only incubation did not reveal any 

immunoreactivity, with only the radula and shell auto-fluorescing.7 

 

 

 

                                                
7 See Appendix II: Supplementary Immunofluorescence Images for confocal image of control group. 

 
 
 

 
 
 
Figure 13: Phalloidin and p105/50 localization in juvenile B. glabrata embryos. e=eye spot. r=radula. (A) 
Red=phalloidin-IR.  (B) Green=p105/50-IR. Note that the eyespot does not show active p105/50-IR in same 
layer as possible muscle localization in the image.  
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Western Blotting  

 

To confirm the specificity of p105/50-IR observed in B. glabrata embryos and to monitor 

p105/50 expression levels throughout the snail’s development, western blotting was used. 

Because p105/50-IR was seen beginning at 4-5 days of development, only embryos 2-7 days 

developed were examined for p105/50 expression via blotting. It is important to note that the 

recombinant B. glabrata p105/50 protein terminates upstream of the p105 cleavage site and is 

therefore a smaller size than the native p50 protein found in embryonic and adult B. glabrata 

samples.  

 

Only a single band slightly below 50 kD was detected in the recombinant B. glabrata p105/50 

protein sample as expected (Fig. 14A). 3-7 day embryos showed bands at 50kD (Fig. 14A), the 

predicted size of native B. glabrata p50. While p105/50 immunofluorescence was not seen at 3-4 

days of development, a faint band was observed at 50 kD at this time point on the western blot. 

2-3 day embryos did not show a band at 50kD (Fig. 14A). In order to quantify and compare 

p105/50 expression levels, band density at each embryonic stage was compared to adult band 

density in ImageJ (Fig. 14B). Results showed that the band density relative to that of the adult 

increased at each stage of development after 3-4 days post-fertilization (Fig. 14B). While 

embryonic p105/50 expression levels were greatest at 6-7 days of development, adult expression 

was still about twice as high in comparison. Nonspecific reactivity was present in all lanes except 

that of recombinant p105/50 protein (Fig. 14A).  
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Figure 14: Western blotting and quantification of 2-7 day embryonic, adult, and recombinant p105/50 
protein (Rp105/50) samples. (A) Western blot of collected samples. MM=molecular marker. Red box 
indicates bands at 50kD or for Rp105/50, slightly below 50kD. (B) Quantification of embryonic band 
density relative to the adult band density. n=1. Quantification conducted in ImageJ.   
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Discussion 

 

In this study, p105/50 NF-kB protein was discovered to localize in B. glabrata during embryonic 

development.  Prior to this research, NF-kB was only known to be in adult B. glabrata, making 

the results of this research a novel addition to the growing knowledge surrounding B. glabrata 

NF-kBs. 

 

p105/50 localizes in the eye spots of B. glabrata embryos 

 

One of the most significant findings from this study was p105/50-IR in the eye spot of 4-7 day B. 

glabrata embryos (Fig. 10). To confirm that p105/50 was in fact localized in the B. glabrata 

embryonic eye spot, we utilized an anti-rhodopsin antibody as rhodopsin is found in the retina of 

most animals. While rhodopsin has yet to be identified and characterized in B. glabrata, the 

rhodopsin antibody used in this study was successful in detecting rhodopsin in L. stagnalis in 

areas such as the photoreceptive layer near the lens (Takigami et al., 2014). Given that L. 

stagnalis and B. glabrata, are in the same class, it was expected that treatment with the same 

rhodopsin antibody would produce similar results.  
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The B. glabrata eye has not yet been studied extensively; however, Baptista and Schall (1989) 

did characterize and diagram the snail’s adult eye, giving insight into the functional components 

of the organ. B. glabrata eyes can be organized by four general structures: the lens, retina, optic 

nerve, and cornea. The lens is the most distinct portion of the eye, with its large, circular shape 

residing in the center of the eyespot. Dorsal to the lens is the cornea, which only covers the 

exposed portions of the lens that are not 

surrounded by the retinal layers. The optic 

nerve is ventral to the lens and extends into the 

nervous system. The retina is one of the more 

complex aspects of the eye, as it is divided 

into four distinct layers: the pigmented layer, 

photoreceptive layer, nuclear layer, and 

fibrous layer (Bapista and Schall, 1989; Fig. 

15). While B. glabrata and L. stagnalis share a 

similar eye structure, only the L. stagnalis eye 

has characterized rhodopsin localization. In a 

L. stagnalis adult eye that was stained with 

anti-rhodopsin antibody by Takigami et al. 

(2014), a pear-shaped eye and a strikingly dark 

pigmented layer are the most profound 

similarities between the two species. A notable 

discovery from Takigami et al. (2014) was 

 
 
 

 
 
 
Figure 15: Schematic of a transverse section the B. glabrata 
eye. L=lens. C=cornea. ON=optic nerve. pl=pigmented layer. 
rl=photoreceptive layer. nl=nuclear layer. fl=fibrous layer. 
RI=type I receptor. RII =type II receptor. Adapted from 
Baptista, D. and Schall, V. (1989).  
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that they found a photoreceptive layer close to the lens, more specifically the “rhabdomeric 

membrane,” to be one of several locations positive for rhodopsin (Fig. 16).  

Looking at the rhodopsin-IR of a 6-7 day B. glabrata embryo, the most intense fluorescence is 

seen within the center of the pigmentation of the surrounding area (Fig. 11D), making it likely 

that rhodopsin at the very least localizes in one of the retinal layers of the embryonic B. glabrata 

eye as it does in L. stagnalis. It is possible that this darker, pigmented area characterizing the eye 

 

 
 
Figure 16: Anti-rhodopsin antibody staining of an adult L. stagnalis eye. L=lens. Black=pigmented layer. Positive 
rhodopsin staining (pink) in rhabdomeric membrane indicated by dashed arrows. Adapted from Takigami et al. (2014). 
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spot is the early stages of the pigmented layer of the eye forming, but studies examining B. 

glabrata eye growth and development would need to be conducted to confirm this hypothesis.  

 

Identification of p105/50 and rhodopsin in B. glabrata eye spots is a novel finding, and the 

similarities in the localization of each protein is striking. Both p105/50-IR and rhodopsin-IR 

were found to form a ring of fluorescence in the center of the eye spot (Fig. 12), making it 

plausible that p105/50 also localizes in the retina where rhodopsin is found. The research 

regarding NF-kB in relation to photoreception or optics is limited; however, based on recent 

literature focusing on NF-kB retinal functions in vertebrates, it is perhaps not unexpected that 

p105/50 localizes in the eye spot of B. glabrata. In vertebrates, p50 is one of the most widely 

expressed NF-kB proteins in the retina of mice, for example (Fan and Cooper, 2009). There is 

also evidence that NF-kB plays a role in vertebrate retinal maintenance (Zeng et al., 2008). This 

could explain the presence of p105/50-IR in the eye spots during the later stages of embryonic 

development; however, this idea will have to be further investigated. Nonetheless, these results 

appear to be the first report of NF-kB localization in an invertebrate eye.  

 

While rhodopsin and p105/50 demonstrated similar localization in the eye spot of all embryos 

between the ages of 6-7 days (Fig. 12), rhodopsin-IR was also expressed in an unknown structure 

outside of the eye spot that extended from the edge of the headfoot region into the inside of the 

shell (Fig. 11C). Rhodopsin is best known for its role in visual function, however, studies have 

suggested that rhodopsin also functions extra-ocularly, or outside the retina.  For example, the 

deep-sea squid Todarodes pacificus contained rhodopsin in the parolfactory vesicles. Despite 

being outside of the eye, rhodopsin nonetheless was hypothesized to be involved in 
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photoreception (Hara and Hara, 1980). Furthermore, in Drosophila, rhodopsin was found to 

function completely independent from light, instead participating in a thermosensory pathway 

that regulates the fly’s temperature sensitivity (Shen et al., 2011). Thus, the additional staining of 

a long, tubular-like structure outside of the eye spot in 6-7 day embryos (Fig. 11A, B, C) may be 

an indication that B. glabarata rhodopsin plays a role outside of the visual system. The possible 

identity of this structure may also be related to respiration, as rhodopsin activity was positive in 

the pneumostome, a respiratory pore unique to slugs and snails, of L. stagnalis in previous 

experiments (Takigami et al., 2014). Since L. stagnalis and B. glabrata share a similar 

respiratory system, it is possible that there is in turn similar reactivity in that area in B. glabrata.  

 

p105/50 localizes in B. glabrata embryonic muscle-like tissue   

 

In addition to distinct eye spot staining, anti-p105/50-IR revealed muscle-like structures between 

the radula and right eyespot in embryos close to hatching when viewed under a higher 

magnification (Figs. 9B, 13B). It was hypothesized that p105/50-IR was in the muscle primarily 

because the fluorescent patterns were elongated and repetitive, much like muscle cells, which 

contain actin filaments that are essential to locomotive function. The “foot” of B. glabrata is 

particularly muscle-dense, as movement results from a wave-like movement of muscle 

contractions (Lai et al., 2010), so it is not unexpected to find muscle in this area of the embryo. 

To support the hypothesis that p105/50 was localizing in muscle, an actin binding reagent, Alexa 

555 phalloidin, was used to compare to p105/50-IR. As noted in the results, there was concern 

that the emission spectra of Alexa 555 phalloidin and anti-rabbit Alexa 488, which bound to the 

p105/50 antibody, were deemed to be too close together to conduct dual staining as excitation of 
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both fluorophores simultaneously could result in cross-over results. By imaging embryos with 

only Alexa 555 phalloidin or anti-rabbit Alexa 488, it was ensured that confocal images were 

only capturing the fluorescence of one fluorophore. When observing the area surrounding the 

right eyespot of embryos treated with Alexa 555 phalloidin or anti-p105/50 antibody, there were 

striking similarities between the two (Fig. 13). In particular, p105/50-IR and phalloidin binding 

were extremely similar to one another in that both showed patterns of fluorescent lines crossing 

obliquely (Fig. 13), a classic indication of muscle cells. Further, anatomical studies of the L. 

stagnalis muscular system, which is likely similar to B. glabrata, found both smooth and striated 

muscle within the organism (Plesch, 1977). As such, it is extremely likely that p105/50 localizes 

in B. glabrata muscle based on the location of p105/50-IR.  

 

While studies on NF-kB in invertebrate muscle are lacking, promising research in vertebrates 

have suggested that the transcription factor is important to muscle maintenance and 

development. In a vertebrate C212 skeletal muscle cell line, NF-kB was identified in the nuclei 

and was found to be involved in embryonic muscle cell proliferation and halting cellular 

differentiation in invertebrates (Guttrich et al., 1999), suggesting that NF-kB is critical for early 

muscular-development. In the medical field, NF-kB is also being examined for its involvement 

in vertebrate muscle repair, with evidence of the transcription factor being activated in patients 

with various forms of muscular defects, such as polymyositis and Duchenne muscular dystrophy 

(Monici et al., 2003).  
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Possible NF-kB localization the CNS of B. glabrata embryos  

 

In addition to several large structures observed in days 5-6 post-laying (Fig. 7), a distinct cluster 

of structures expressing p105/50-IR was observed in 6-7 day embryos near the shell-headfoot 

interface (Fig. 8). While the identity of these structures is not known, it is possible that they 

might be involved in the CNS of the snail. One reason this may true is that preliminary studies of 

adult B. glabrata brains showed p105/50 immunofluorescence (Judith Humphries, PhD, personal 

communication), an indicator that p105/50 in turn may also be expressed in the developing CNS. 

During embryogenesis, Weinlander (2012) found serotonin (5-HT), a neurotransmitter, to  

localize in an elongated structure identified to be neurites near the edge of the headfoot region 

that was similar to the p105/50-IR found in juvenile embryos (Fig. 17). Given that 5-HT 

localizes in the nervous system, it is possible that similarities between p105/50-IR and 5-HT-IR 

in juvenile embryos suggest NF-kB might be in the B. glabrata nervous system (Fig 17).  

 

While there is still uncertainty regarding the role of NF-kB in the B. glabrata CNS, vertebrate 

studies have shown that p105/50 is involved in neuronal function. Knockout p50 in mice, for 

example, compromised critical components of the nervous system, including pain reception, 

neurogenesis, and memory retention (Kassed et al., 2002, Niederberger et al., 2007, Denis-

Donini et al., 2008, Kaltschmidt and Kaltschmidt, 2009), suggesting that p105/50 functions in 

neurological maintenance and function. Further, it is likely that NF-kB functions in synaptic 

mechanisms and neural cell proliferation in vertebrates (Kaltschmidt and Kaltschmidt, 2009). 
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NF-kB expression begins during B. glabrata embryogenesis  

 

Like immunofluorescence, western blotting strongly suggests that p105/50 is expressed during 

the snail’s early development. Western blotting revealed that p105/50 expression begins as early 

as 3-4 days of development in B. glabrata embryos (Fig. 14). It is important to note, however, 

that while western blotting indicated that p105/50 expression began at 3-4 days of development, 

p105/50-IR was only noticeable at 4-5 days post-fertilization. 

 

 
 
 
Figure 17: 5-HT-IR and p105/50-IR in juvenile B. glabrata embryos. (A) Green=5-HT-IR. Red dashed line follows a path of 5-
HT neurites. Adapted from Weinlander (2012). (B) Green=p105/50-IR. Red-dashed line indicates similar structure indicated by 
the red dashed line in (A). 
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Expression levels of embryonic p105/50 relative to that of the adult snail were seen to increase 

with each stage of development, suggesting that NF-kB expression also increases as B. glabrata 

matures. There were several nonspecific bands that appeared for all samples except for that of 

the recombinant p105/50 protein. It is possible that this was due to antibody degradation as a 

result of freeze-thaw cycles or simply a high primary antibody concentration, as previous 

western blots conducted in the Humphries Lab with the same antibody did not show nonspecific 

bands.  

 

Conclusions and Future Studies:  

 

While the findings from this research are novel regarding the localization and potential roles of 

NF-kB, specifically p105/50, during B. glabrata embryonic development, there is still a 

significant gap in our understanding of how p105/50 functions in the embryonic and adult snail. 

In this study, the localization of p105/50 in eye spots and muscle was determined using 

supplementary reagents known to target rhodopsin and actin. It is important to note, however, 

that the results produced by using reagents such as an anti-rhodopsin antibody and Alexa 555 

phalloidin were novel in themselves, as neither rhodopsin or muscle development have been 

characterized in B. glabrata. 

 

A promising area of study in B. glabrata regarding NF-kB functionality is in the CNS and retina 

of the snail. While this study provides initial evidence of p105/50 localization in the eye spots, as 

well as possible expression in the CNS, there are several additional steps that will need to be 
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taken to confirm this hypothesis. Studies will be carried out to identify the localization of 

p105/50 in the adult snail, as there are no published studies on NF-kB localization at any point 

during its lifespan. To investigate possible embryonic p105/50 localization in the CNS, it would 

be beneficial to optimize a dual-labeling immunofluorescence protocol using an anti-5-HT 

antibody with the anti-p105/50 antibody to identify points of colocalization between the IRs. 

Additionally, it would be beneficial to stain the nuclei of the embryos using reagents such as 

Hoechst or DAPI to see if the cluster of structures in 6-7 day embryos expressing p105/50-IR 

(Fig. 8) are cellular. Preliminary experiments using Hoechst allowed visualization of cell nuclei; 

however, as embryos were whole-mounted on slides for immunofluorescence, it was difficult to 

associate one nucleus to one cell as multiple layers of nuclei can fluoresce in the same area.  

 

As mentioned previously, rhodopsin has yet to be characterized in B. glabrata. While four B. 

glabrata opsin sequences have been predicted (Ramirez et al., 2016), preliminary polymerase 

chain reaction (PCR) experiments that we conducted targeting a rhodopsin sequence failed to 

amplify a rhodopsin-like transcript. However, a transcript for another one of these opsins, 

retinochrome, was recently identified within transcript data made available through the B. 

glabrata genome project (Adema et al., 2017). Currently, a custom antibody against this 

transcript is being developed to study retinochrome further. Moving forward, it would be of 

interest not only to confirm the genomic sequence of rhodopsin in B. glabrata, but also to 

investigate photoreception and retinal development in the snail as a whole. Future studies will 

examine and potentially identify other proteins related to optics including the transcription factor 

PAX6, which is known to be involved in molluscan eye development (Tomarev et al., 1997).  
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While there are many future experiments to be conducted regarding the localization of NF-kB in 

B. glabrata, this novel study is the first to report NF-kB expression during not just gastropod 

development, but molluscan embryogenesis as a whole. 
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Appendix I: Methods Expanded 

 

1. To obtain Leica TCS SP5 II confocal images of B. glabrata embryos expressing p105/50-

IR and rhodopsin-IR, argon laser 488 was used at 6-15% capacity. Images of B. glabrata 

embryos expressing Alexa 555 phalloidin fluorescence were excited with lasers 542 and 594 

at 20% capacity.  

 

2. In order to make the recombinant B. glabrata p105/50 protein, DNA representing the N-

terminus and RHD of B. glabrata p105/50 was inserted into a pET-30A(+) vector 

(GenScript, Piscataway, NJ). E. coli were then transformed with the vector and a His-tagged 

recombinant B. glabrata p105/50 protein was expressed through IPTG induction.  

 

3. To measure protein quantity in each sample containing embryonic or adult B. glabrata 

tissue, absorbance levels of each experimental and standard sample of a known BSA 

concentration (Table S1) were measured in duplicate at 562nm using a POLARstar Omega 

plate reader (BMG Lab Tech, Cary, NC). Collected absorbance values were corrected to the 

absorbance of a blank sample containing pure sPBS and averaged. Absorbance levels of BSA 

samples were then graphed versus [BSA] to create a standard curve and best fit line. The 

equation of this line was then used to calculate the amount protein in each B. glabrata 

embryonic or adult sample. The volume required to contain 10µg of protein, with the 

exception of the recombinant p105/50 sample, which had volumes calculated to contain 

2.5µg of protein, was then calculated and loaded into each well.  
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4. As recommended by Promega, to create the BCIP/NBT development substrate, for every 5 

mL AP buffer, 33 µL of NBT (50mg/mL in 70% dimethylformamide) was added to the 

solution and mixed. 16.5 µL of BCIP (50mg/mL in 100% dimethylformamide) was 

subsequently added and mixed into the solution to create the final working substrate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table S1: Dilution scheme for standard microplate procedure of a BCA protein assay. The diluent 
used in this particular study was sPBS. Adapted from Thermo Scientific.  
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Appendix II: Supplementary Immunofluorescence Images 

 

5. Additional confocal image of a 5-6 day embryo expressing p105/50-IR:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure S1: 5-6 day B. glabrata embryo expressing p105/50-IR. e=eye spot. r=radula. White light 
(WL) confocal images and p105/50-IR confocal images were merged to produce a single 
composite image. Dashed red line follows the path of a thin structure extending between the eye 
spots. White arrows indicate large structures expressing p105/50-IR.  
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6. Additional confocal images of 6-7 day embryos expressing p105/50-IR:  

 

 

 

 
 
 

 
 
Figure S2: 6-7 day B. glabrata embryos expressing p105/50-IR. e=eye spot. r=radula. (A, C) White light (WL) confocal images and 
p105/50-IR confocal images were merged to produce a single composite image. Red boxes indicate cluster of structures expressing 
p105/50-IR. Dashed red line follows the path of a thin structure extending the length of the headfoot region between the eye spots. (B) 
Max projection of magnified cell-like structures of (A).  
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7. Confocal image of an embryo treated with only Alexa 488:  

 

 

 

 

 

 

 

 

 
 
Figure S3: Control group of a B. glabrata embryo. r=radula. Embryo treated with only Alexa 488. The radula and 
shell were the only fluorescent structures in the headfoot region under this treatment.  
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