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ABSTRACT 

The lateral line is a mechanosensory system used by fish to sense the movement of water. 

It is evolutionarily related to the inner-ear in humans. For both organisms, the binding of the 

CXCL12 (SDF-1 ligand) to the CXCR4 receptor induces conformational changes needed to 

activate signal transduction. This signaling results in numerous cellular responses such as cell 

fate, chemotaxis, and gene transcription. Interestingly, researchers have found that another 

signaling molecule, CXCL14, can also bind to the CXCR4 receptor with high affinity 

(Tanegashima et al., 2013). As a result, we hypothesize that CXCL14 modulates CXCL12-

mediated chemotaxis, presumably acting as an allosteric regulator. 

We are concerned with the allosteric relationship between CXCL14 and CXCL12 and 

how those relationships affect gene expression in lateral line development. In order to study this 

interaction, zebrafish were used as our model organism. To examine the effects of CXCL14 on 

CXCL12-mediated gene transcription, zebrafish embryos were microinjected with CXCL14 

antisense morpholino and incubated for a period of three timepoints: 24 dpf, 36 dpf, and 48 dpf, 

when lateral line development occurs. Our preliminary results suggest that the absence of 

CXCL14 affects the gene expression of CXCL14, CXCL12, CXCR4, CXCR7, epcam, claudin, 

and snail1b during lateral line development, thereby suggesting the allosteric capabilities of 

CXCL14. Further studies will be conducted to determine the degree to which CXCL14 affects 

the transcription levels of these genes.  
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INTRODUCTION 

Zebrafish, or Danio rerio, are freshwater fish native to the Himalayan region. In order to 

properly detect and avoid predators, zebrafish rely on a lateral line system to sense movement in 

the water. The lateral line system is a mechanosensory system used by fish to detect water 

current stimuli. Similar to the inner-ear in humans, the lateral line system allows zebrafish the 

ability to “hear” their surroundings. This provides zebrafish with coordination and balance. For 

zebrafish, lateral line development is dependent on activation of the CXCL12 (SDF-1 ligand)- 

CXCR4 signaling pathway. Once activated, this signaling pathway results in numerous cellular 

responses such as chemotaxis, changes in metabolism, and/or changes in gene expression. In 

recent years, however, CXCL14 has been shown to potentially modulate the CXCL12-CXCR4 

pathway (Tanegashima et al., 2013). In our lab, we are concerned with the extent to which 

CXCL14-mediated gene expression affects lateral line development. 

 

Part 1- Genetic information and signaling pathways 

1.1. The central dogma and gene expression 

To begin, every form of life is bound together by a shared characteristic: genetic 

information. On a molecular level, the flow of genetic information from one macromolecule to 

another is known as the “Central Dogma of Molecular Biology” (Figure 1) (Crick, 1970).  This 

process begins with the interactions between deoxyribonucleic acid (DNA) and ribonucleic acid 

(RNA). These nucleic acids store and transfer the information needed to provide the cell with 

instructions for making proteins (Lodish et al., 2000). Proteins are important macromolecules 
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that are essential for all life. For example, proteins provide structural support in the form of 

muscles as well as immunological support with the production of antibodies.  

 

Figure 1. The central dogma model for molecular biology. Solid arrows denote general transfers 

of genetic material whereas dotted arrows show special transfer of genetic material. Adapted from 

Francis Crick (1970). 

 

The genetic material stored in DNA is composed of four chemical bases: adenine (A), 

guanine (G), cytosine (C), and thymine (T) (Ptashne, 2004). Similar to letters forming words and 

sentences, these nucleotides serve as building blocks for the formation of nucleic acid polymers 

such as DNA or RNA (Ptashne, 2004). Likewise, the order in which these nucleotides are 

arranged determines the genetic information they convey. This process resembles how an 

arrangement of words changes the meanings they convey.   

Embedded within DNA are genes which contain the nucleotide sequences needed to code 

for molecules. Some genes code for proteins with specialized functions such as transcription 

factors. When transcription factors bind to DNA, they can either activate or repress gene 
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transcription (Brooker et al., 2014). When the cell receives signals to produce proteins, the 

corresponding genes that code for them are activated. RNA polymerase transcribes genes into 

multiple copies of messenger RNA (mRNA) and, from there, ribosomes can now translate these 

mRNAs into the proteins needed for the cell (Ptashne, 2004). Once these proteins are 

synthesized, they can now carry out specialized jobs such as receiving and transmitting signals 

involved in regulating gene expression.  

 

1.2. Signal transduction pathways and gene expression 

The cellular mechanisms that govern gene transcription are composed of several parts 

that come together to form signal transduction pathways. The start of signaling pathways begins 

with the interactions between a signaling molecule, known as a ligand, and its corresponding 

receiving molecule or, receptor (Brooker et al., 2014). Ligands are extracellular signaling 

molecules with a high affinity for their receptors; meaning they can recognize and bind to one or 

at most a few target receptors (Alberts et al., 2002). These target receptors are found on the 

surface of cells. When ligands bind to their respective receptors, communication occurs where 

extracellular signals are transduced to the molecules that govern intracellular responses (Figure 

2).  
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Figure 2. General schematic of the CXCL12-CXCR4 cell signaling pathway. When 

chemokine ligand 12 (CXCL12) binds to its corresponding chemokine receptor (CXCR4), a signal 

transduction pathway is activated. This leads to a series of cellular responses such as changes in 

gene expression. Gene transcription can either be upregulated or downregulated, causing an 

increase or decrease in gene expression respectively. When chemokine ligand 14 (CXCL14) binds 

to the same receptor, CXCL12-mediated signaling is inhibited. 

 

In order to produce a cellular response, there must be an interaction between ligands and 

receptors. Namely, when ligands bind to their receptor, a conformational change must occur 

wherein the shape or activity of the receptor is changed (Brooker et al., 2014). These 

conformational changes activate the ligand-receptor complex and allow extracellular cues from 

the ligand to be translated into signals that can be fed into the appropriate signal transduction 

pathway (Brooker et al., 2014). Once these signals are transmitted inside the cell, molecules 
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within the signaling pathway are activated. Thereafter, the signal grows stronger until a cellular 

response in produced.  

Signaling pathways are composed of several molecules responsible for activating or 

repressing a series of cellular responses (Brooker et al., 2014). As mentioned, the cell must 

receive word of external stimuli through ligand-receptor binding. In response to extracellular 

stimuli, factors that regulate cellular responses are activated (Gomperts et al., 2002). More 

specifically, when the cell receives external cues, signals propagate to proteins residing in the 

appropriate signal transduction pathway(s). These proteins undergo a series of changes in order 

to send and amplify the signal. This is referred to as a signaling cascade (Brooker et al., 2014).  

From one factor to the next, the signal cascades down a signaling pathway where it becomes 

amplified. As more and more proteins are activated, the signal becomes stronger. Once these 

signaling cascades take root, the signal continues to travel down a pathway until the appropriate 

cellular response is produced. In my lab, we are focused on one very important cellular response- 

gene transcription.  

Signaling pathways give rise to a wide variety of responses that regulate important 

cellular functions such as gene transcription or cell differentiation, wherein the cell can 

differentiate to fit the needs of the organism (Berg et al., 2002). When signaling pathways occur, 

proteins that regulate gene transcription, also known as transcription factors, are activated 

(Brooker et al., 2014). These transcription factors ultimately determine whether certain genes are 

turned on or off. Biochemically speaking, gene expression is regulated by signal transduction 

pathways and the proteins that either activate or repress them.  

It is important to note that these pathways can affect gene expression in one of two ways: 

during development and/or cell differentiation. As an organism develops, certain genes are 
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turned on or off. This allow cells to differentiate into what the organism needs (Brooker et al., 

2014). From there, an embryo can develop properly without having too much or too little of a 

certain product. Although regulation is a key function of cells, there will always be exceptions; 

namely, cancer. In terms of malignant growth, cancerous cells multiply under conditions their 

normal counterparts do not. This process is caused in part by certain genes being turned on or off 

when they should not be (Ptashne, 2004).  

 

1.3. Cancer biology 

Since the first documented case around 1600 B.C.E., cancer has become a popular area of 

study for human health (Sudhakar, 2009). In recent years, scientific research has expanded the 

area of oncology, the study of cancer, to include more research for drug therapies that can target 

and combat cancer. More often than not, cancerous cells take advantage of damaged DNA in 

normal cells to utilize cell machinery for their own device (Sudhakar, 2009). While some cancer 

cells continue to grow and develop without regulation, others take advantage of the circulatory 

system and travel through the bloodstream (Brooker et al., 2014). When this occurs, cancer cells 

circulating in the blood can come into contact with, and spread to, other parts of the body. This is 

referred to as metastasis (Brooker et al., 2014). Through the circulatory system, cancer can 

spread and grow in areas apart from the site of origin. One way the body defends against these 

cells is through immunosurveillance.   
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1.4. CXCL12 and CXCL14 are closely related CXC-family chemokines  

 Immunosurveillance is predominantly regulated by a family of chemokines (CXC). 

Chemokines are small proteins that heavily regulate cell migration for both organogenesis (the 

formation of organs) and immunosurveillance (Bacon et al., 2000).  In particular, these CXC-

chemokines are chemotactic, meaning they cause cells to respond to chemical stimuli in their 

environment. In doing so, chemokines promote cell migration for processes such as 

organogenesis and immunosurveillance to occur (Collins et al., 2017).  

Most notable among this family are chemokine-ligand 12 (CXCL12) and chemokine-

ligand 14 (CXCL14), both of which are considered primordial chemokines due to their 

evolutionarily conserved nature. Found among many different organisms, such as humans and 

zebrafish, these ligands play an important role in embryogenesis (the formation and development 

of an embryo) and immunosurveillance (Hara et al., 2012; Collins et al., 2017). As a result, 

zebrafish are an important model organism for analyzing signal transduction pathways and 

assessing their role in different cellular responses; many of which, are found in humans.   

 

1.5. CXCL12-mediated signaling pathways 

As mentioned previously, in order to promote cellular responses for processes such as 

embryogenesis, a signaling cascade must occur. There are two known receptors for CXCL12: 

chemokine-receptor 4 (CXCR4) and chemokine-receptor 7 (CXCR7) (Tanegashima et al., 

2013a). When CXCL12 binds to either CXCR7, or more importantly to CXCR4, a signaling 

cascade is activated within the cell. As a result, a cellular response is produced that triggers 

https://www.nature.com/subjects/immunosurveillance
https://en.wikipedia.org/wiki/Chemotaxis
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important processes such as the homing of lymphocytes or the migration of primordial germ cells 

and neural progenitors (Tanegashima et al., 2013a; Eckert et al., 2018).  

Lymphocytes, also known as B cells or T cells, are a type of white blood cell responsible 

for specific immunity (Brooker et al., 2014). Lymphocytes send signals to cells in response to 

damage or infection, thereby playing a crucial part in regulating our immune system (Brooker et 

al., 2014). Migration of cells is also observed during embryonic development. During 

embryogenesis, cells migrate to where they are needed (Brooker et al., 2014). This allows for the 

organism to develop properly for maturation. In addition, neural progenitors can migrate and 

develop into neuronal cells and glial cells. These cells help maintain homeostasis and provide 

support and protection for neurons (Eckert et al., 2018). 

Unfortunately, if cells experience any form of damage, they are vulnerable to 

opportunistic pathogens, programmed cell death (apoptosis), or cancer. During DNA 

repair/DNA-damage pathways, cancer progression can occur. This is due to high levels of 

genomic instability and an increase in mutation rate (Turgeon et al., 2018).  In addition to DNA-

repair pathways, it is known that other signaling pathways play a role in cancer proliferation. In 

particular, the CXCL12–CXCR4 signaling pathway has been shown to promote cancer growth 

and metastasis (Tanegashima et al., 2013a; Tanegashima et al., 2013b; Eckert et al., 2018). 

 In recent years, researchers have discovered that the CXCL12–CXCR4 signaling 

pathway is manipulated by several cancer types to promote cell growth and metastasis 

(Tanegashima et al., 2013a). As a result, elevated levels of CXCR4 and CXCL12 have led to a 

poor prognosis for cancer patients (Tanegashima et al., 2013b; Eckert et al., 2018). With elevated 

levels, there is increased CXCL12-CXCR4 signaling, which has been shown to contribute to 
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malignant tumor growth, metastasis, neoplastic transformation, and infiltration (Eckert et al., 

2018).  

The CXCL12–CXCR4 signaling pathway has been attributed to the close relationship 

between malignant growth in over 20 different cancers, including: lung, breast, and ovarian 

cancers (Tanegashima et al., 2013b). Researchers have studied the CXCL12-CXCR4 pathway in 

hopes of unlocking ways to combat and repress cancer growth. Consequently, in the process of 

analyzing CXCL12-CXCR4 signaling, it appears another chemokine-ligand may hold the answer 

to suppressing tumor growth. 

Generally, it is understood that CXCL12 binds to CXCR4 to promote cell migration and 

cell differentiation. Although these processes aid in organismal development, the CXCL12-

CXCR4 pathway can be used by opportunistic cancers to develop without any form of 

regulation. In more recent years, however, it has been discovered that chemokine-ligand 14 

(CXCL14) plays a very important regulatory role in the CXCL12-CXCR4 pathway. 

 

1.6. CXCL14 as an allosteric modulator 

In the field of cell biology, it is commonly accepted that ligands are matched to their 

respective receptors. Allosteric regulators are molecules which influence (or modulate) the 

signaling capabilities of ligands. More specifically, allosteric regulators can have an impact on a 

ligand’s ability to activate or repress a target protein’s function (Rothman et al., 2015).  In the 

case of CXCL14, this chemokine may act as an allosteric modulator.   

Similar to its counterpart (CXCL12), CXCL14 is a primordial chemokine. While 

CXCL14 is an evolutionarily conserved chemokine, there does not appear to be a specific 

receptor it binds to. Although a unique receptor for CXCL14 has not been identified, the ligand 
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is known to regulate a variety of normal cellular responses (Collins et al., 2017). For example, 

CXCL14 has been shown to regulate metabolism, cell migration, and immunosurveillance.  

In terms of cancer, CXCL14 has been shown to have both tumor-suppressing or tumor-

supporting functions (Otte et al., 2014). CXCL14 expression varies among different cancer 

types. As a result, CXCL14’s role in tumor suppression, and progression, differs (Collins et al., 

2017). For some cancers, CXCL14 gene expression is downregulated (Hara et al., 2012). This 

contrasts with high levels of CXCL12 gene expression in many cancers. One possible 

explanation for decreased CXCL14 expression in some cancers is that loss in CXCL14 results in 

a loss of immunosurveillance of cancer cells. Therefore, a decrease in CXCL14 expression 

promotes cancer cell survival and proliferation. 

While a unique receptor for CXCL14 has not been identified, it has been shown that 

CXCL14 can bind to CXCR4, the CXCL12 receptor, with high affinity (Hara et al., 2012; 

Tanegashima et al., 2013a; Tanegashima et al., 2013b; Collins et al., 2017). In doing so, 

CXCL14 interferes with CXCL12 signaling through its receptor. More specifically, CXCL14 

inhibits CXCL12’s ability to initiate cell migration of bone marrow derived hematopoietic 

progenitors (Tanegashima et al., 2013a; Tanegashima et al., 2013b). Hematopoietic progenitor 

cells give rise to blood cells, B-cells, and T-cells. Whereas B-cells and T-cells aid in 

immunological responses, blood cells can be divided into two primary groups. When red blood 

cells are made, they exclusively transport oxygen to different parts of the body. On the contrary, 

white blood cells can differentiate into numerous types of immune cells to target pathogens.  

When the bone marrow is damaged, abnormal leukocytes can enter the lymphatic system 

and use it to divide. In this situation, cancer cells can repurpose the CXCL12-CXCR4 signaling 

pathway to promote tumor growth and metastasis (Tanegashima et al., 2013a). By using the 
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CXCL12-CXCR4 pathway, cancer cells can continue to grow and divide without interruption. In 

addition, their survival is facilitated by CXCL12’s ability to promote metastasis and cell 

migration.   

Several studies have demonstrated CXCL14’s ability to inhibit CXCL12-mediated 

processes by binding to CXCR4. As a result, researchers have proposed that CXCL14 is a 

natural inhibitor of CXCL12 by highlighting its ability to “fine-tune” the CXCL12-CXCR4 

pathway (Tanegashima et al., 2013a). Due to the conservation of CXCL12 and CXCL14 

sequences across organisms, it can be assumed that these two chemokine-ligands have evolved 

together to assume regulatory functions within similar pathways (Tanegashima et al., 2013a). As 

a result, we can assume that CXCL14 possesses the ability to allosterically modulate the 

CXCL12-CXCR4 signaling pathway.  

CXCR4, being a receptor, is found on the surface of cells; a location which facilitates 

contact with external signals. CXCR4 contains transmembrane helices which allow extracellular 

cues to communicate with signaling molecules inside the cell. On a chemical basis, CXCL12 

contains an N-terminal region with the ability to bind to the transmembrane helices of CXCR4 

(Tanegashima et al., 2013b). When this chemical interaction occurs, the CXCL12-CXCR4 

signaling pathway is activated. Similarly, a specific domain within CXCL14 can bind to CXCR4. 

In doing so, CXCL14 modulates CXCL12-CXCR4 signaling (Figures 2 and 3). 
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Figure 3. Model explaining how CXCL14 can synergize with CXCL12 in the induction of 

CXCR4-mediated chemokine responses. Conformational states can be influenced by ligand 

binding (shown by the shift from black to yellow conformation upon CXCL14 binding). 

CXCL14 binding induces allosteric changes in partner molecules that are present in CXCR4 

dimers, thereby lowering the threshold of receptor activation by the functional ligand CXCL12 

(shown here by the shift from black to blue conformations in the partner molecule). Adapted 

from Collins et al. 2017.  

 

The plasma membrane is a physical barrier which envelopes the cell and separates the 

intracellular environment from its extracellular surroundings (Brooker et al., 2014). When the N-

terminal region of CXCL12 comes into contact with CXCR4, a conformational change occurs 

where molecules on the intracellular side of the plasma membrane receive signals from 

extracellular stimuli. From there, signal transduction pathways are activated, and cellular 

responses occur. Without this interaction, conformational changes do not occur, and signal 

transduction is not activated. This process occurs in the presence of CXCL14.  

CXCL14 has the ability to inhibit CXCL12-CXCR4 mediated activity in humans. When 

approaching this from a pharmacological perspective, CXCL14 can potentially be used as a form 

of drug therapy to combat CXCL12-mediated cancer growth. Due to its allosteric nature, 



 

 

13 

CXCL14 can be designed to out-compete CXCL12. In doing so, CXCL14 can be more apt to 

bind to CXCR4, and with higher affinity. By preventing elevated levels of CXCL12 from 

circulating and encountering CXCR4, CXCL14 can be designed to efficiently inhibit CXCL12-

mediated chemotaxis, thereby reducing cancer growth. 

Many issues arise when undertaking a project of this caliber. Namely, without an 

identifiable receptor, potential CXCL14-stimulated signaling pathways are not fully understood. 

In order to design an effective form of drug therapy, we need to be aware of any competing 

reactions that could potentially interfere with CXCR4-CXCL14 binding. As a means of 

obtaining a better grasp of CXCL14 function, we must turn to model organisms for help. 

 

Part II- Zebrafish and the lateral line system 

1.1. Zebrafish as a model organism 

Model organisms are widely studied species that are used to enhance our understanding 

of human health. These model organisms are used for research due to their reproductive nature, 

ability to maintain in a laboratory setting, and their value in experimental design (NIGMS, 

2018). From mice, to worms, to fruit flies, the use of model organisms has led to extensive 

research in the field of biology. It wasn’t until George Streisinger, however, that zebrafish were 

brought into the spotlight (Parichy, 2015). Later dubbed the “founder of modern zebrafish 

research,” Streisinger published a series of papers where he used zebrafish as a model organism 

to investigate biology relevant to human health.  

Zebrafish, or Danio rerio, are small freshwater fish native to the Himalayan region. Since 

their debut in the 1980’s, zebrafish have emerged from the water as a novel model organism 
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(Parichy, 2015).  Zebrafish are ideal model organisms for several reasons. They are small and 

easy to maintain.  They have external fertilization and can produce hundreds of embryos per 

mating. Zebrafish embryos undergo rapid, external development and are transparent through 

early development (Adams et al., 2018). This allows researchers a convenient way to visually 

analyze the process of embryogenesis (Hsieh et al., 2002). As a result, zebrafish are used in 

research to study development, disease, and physiology.   

Following their increase in popularity, extensive work has been done on zebrafish, 

including sequencing of their genome. Through genome sequencing, it has been revealed that 

zebrafish contain roughly 70% of the same genes as humans (Wellcome Genome, 2014). 

Moreover, many of these genes are associated with disease in humans. Researchers can use 

molecular tools, such as morpholinos, to silence specific genes and analyze their function in 

zebrafish in order to assess their role in humans (Adams et al., 2018). Morpholinos are a type of 

stable antisense molecules that will complement mRNA molecules and prevent translation of a 

functional protein product. This project utilized a morpholino targeted to CXCL14 and focused 

on the effects of loss of CXCL14 function on the CXCL12-CXCR4 signaling pathway. More 

specifically, its role in gene expression and embryonic development of the lateral line system. 

 

1.2. The lateral line system 

The lateral line system is a mechanosensory structure found in fish and is evolutionarily 

related to the inner ear in humans. The lateral line system is a sensory network used by fish to 

detect movements of water (Coombs et al., 2016). However, in order to sense water current 

stimuli, zebrafish depend on neuromasts present in the lateral line (Chitnis et al., 2012). 

Neuromasts consist of mechano-sensory hair cells that are innervated by sensory neurons 
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branching to and from the brain (Ghysen et al., 2004). For zebrafish to respond to their 

environment, the brain needs to receive the stimulus associated with movement. Hair cells help 

facilitate this communication.  

Hair cells are so-called because they extend hair like ciliary bundles embedded within a 

gelatinous cupula that is in contact with the water (Figure 4). Therefore, each neuromast has a 

cupula which bends with movement of the water (Chitnis et al., 2012). Due to its gelatinous 

nature, any movement in the water causes the cupula to bend in the direction of the stimuli 

(Ghysen et al., 2007). As a result, the ciliary bundles also move. This collection of movement, in 

both the cupula and ciliary bundle, causes a depolarization of the hair cells.  

Since hair cells are innervated by sensory neurons (afferent neurons), this depolarization 

is passed on to the sensory neurons which transmit information regarding the movement to the 

central nervous system (CNS) (Chitnis et al., 2012). When the brain processes this stimulus, it 

sends a signal back to the hair cells as well as to muscles to move in response to the stimuli via 

efferent neurons. Zebrafish use their lateral line system to translate water current stimuli into 

signals that lead to behaviors such as obstacle and/or predator avoidance, schooling, or 

orientation to a water current (Montgomery et al., 1997).   
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Figure 4. Structure and innervation of a hair cell. Hair cells are embedded within a gelatinous 

cupula that is in contact with water. In the event of water movement, cupulas bend in the direction 

of the stimuli. The movement in both cupulas and ciliary bundles causes a depolarization. This 

depolarization is passed onto sensory neurons via afferent fibers. When the brain processes this 

stimulus, a signal is sent back to the hair cells via efferent fibers. Adapted from Current Biology.  

 

The lateral line system can be broken down into two parts: the anterior lateral line (ALL) 

and the posterior lateral line (PLL). Neuromasts on the head of the fish form the ALL whereas 

neuromasts extending from the head towards the tip of the tail, form the PLL (Ghysen et al., 

2012). The posterior lateral line develops from a placode near the otic (ear) vesicle. Placodes are 

formed during embryonic development from thickenings of the surface cells (ectoderm) and 

eventually give rise to cranial ganglia and olfactory epithelium. In the case of the lateral line 

placode, cells from the placode will detach from and begin migrating to form the posterior lateral 

line primordium (PLLP). In doing so, the cells will migrate along a path following the horizontal 

myoseptum, a layer of connective tissue separating the dorsal (back) and ventral (belly) 

musculature and travel to the tip of the tail.  
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As the PLL primordium migrates, neuromasts are deposited along the way (Figure 5) 

(Ghysen et al., 2004). The cells that remain in the PLL placode are used to form the neurons of 

the lateral line ganglion, which will serve as the communication center between the brain and 

neuromasts. Sensory neurons in the lateral line ganglion extend growth cones that follow the 

migrating primordium to innervate the sensory hair cells of deposited neuromasts. This process 

gives rise to the lateral line sensory system and its mechanosensory structure (Metcalfe et al., 

1985; Chitnis et al., 2012).  

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Posterior lateral line (PLL) development. Neuromasts extending from the head 

towards the tip of the tail form the PLL. The PLL develops from a placode near the otic (ear) 

vesicle. Cells from the placode will detach from and begin migrating to form the posterior lateral 

line primordium (PLLP). As the PLL primordium migrates, neuromasts are deposited along the 

way. The cells that remain in the PLL placode are used to form the neurons of the lateral line 

ganglion. Adapted from Current Biology. 
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1.3. CXCL12-CXCR4 and lateral line development 

In zebrafish, the CXCL12-CXCR4 signaling pathway plays an important role in lateral 

line development. For the posterior lateral line primordium to migrate from just posterior of the 

otic (ear) vesicle to the tip of the tail, chemokine signaling must occur. CXCR4, located on the 

surface of migrating cells, binds to CXCL12, which is found along the horizontal myoseptum. 

The presence of CXCL12 is attributed with providing a prospective pathway for the primordium 

to migrate on and to establish where the posterior lateral line will develop (Ghysen et al., 2004). 

This is due to CXCL12’s chemotactic nature. In studies, it has been found that loss of CXCL12 

expression results in failure of the PLL primordium to migrate along the horizontal myoseptum 

(Ghysen et al., 2004; Valentin et al., 2007).  

Given the importance of the lateral line system as a mechanosensory structure and 

CXCL12’s role in its formation, it is important to understand how signaling pathways such as the 

CXCL12-CXCR4 is regulating PLL development.  In recent years, researchers have discovered 

that CXCL14 interacts with CXCR4 to modulate CXCL12-mediated chemotaxis in other 

biological contexts. This suggests that CXCL14 can function this way during development to 

regulate the CXCL12-CXCR4 signaling pathway. In our lab, we are focused on whether 

CXCL14 regulates lateral line development by attenuating the migratory signal mediated through 

CXCL12-CXCR4 signaling pathways via allosteric modulation.  
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MATERIALS AND METHODS 

2.1. Zebrafish husbandry 

  Zebrafish (Danio rerio) of the AB wildtype-strain were obtained from ZIRC- Zebrafish 

International Resource Center (Eugene, OR, USA) and housed in six separate 2.8-liter tanks 

(Aquaneering, San Diego, CA, USA). Each tank housed three males and three females. Tanks 

were separated according to birthdates. Zebrafish were maintained at 28.5°C with a 10-hours 

dark, 14-hours light cycle. Zebrafish were fed TetraMin tropical flakes (Blacksburg, VA, USA) 

ad libitum and had continuous access to filtered, aged tap water using the Pentair Shurflo water 

pump (Minneapolis, MN, USA) and Aquaneering water filter system (San Diego, CA, USA). 

Embryos were incubated in 1x E3 buffer at 28.5°C. Developmental stages were determined by 

embryo morphology and hours post-fertilization (hpf). See Appendices 1 and 2 for detailed 

protocols. 

 

2.2. Microinjection 

Zebrafish embryos were injected at the one-cell stage with 1 nl of 0.3 uM CXCL14 

antisense morpholino (MO) in phenol red buffer (5- CCGTACTACAGCGATTCATCCCCAA-

3’). CXCL14-MO was obtained from Gene Tools (Gene Tools LLC., Philomath, OR, USA) 

(Appendix 2). For controls, zebrafish embryos were microinjected with 1 nl phenol red buffer 

and, as an additional control, not microinjected. Zebrafish embryos were maintained at 28.5ºC 

for a series of three incubation periods: 24 hours post-fertilization, 36 hours post-fertilization, 
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and 48 hours post-fertilization, at which time viable embryos were assessed and total RNAs 

were extracted. See Appendices 2 and 3 for detailed protocols.  

 

2.3. Primer Design 

Two different sets of gene specific primer pairs were designed using NCBI Primer-

BLAST (National Center for Biotechnology Information, Rockville Pike, MD, USA). To 

examine whether CXCL14 knock-down affects gene expression, we designed primer pairs based 

off possible genes affected by, or downstream of, either CXCL14 or CXCL12. This set of gene 

specific primer pairs were used for qPCR as follows: β-actin and GAPDH were used as reference 

control genes whereas NF-kB, SCX-a, pmp22-b, mpz, mbp, OSR1, OSR2, and COL17-A1b 

were target genes of interest (Table 1).  

Based off inconclusive data from primer set #1 (Appendix 5), the research question was 

reformulated to examine the relationship between CXCL14 knock-down and embryonic 

development. To determine whether CXCL14 knock-down affects gene expression, we designed 

primers based off genes expressed during lateral line development. This set of gene specific 

primer pairs were used for qPCR as follows: β-actin was used as the reference gene whereas 

CXCL14-a, CXCL12-a, CXCR4-b, CXCR7-b, snail-1b, cldn-2, and epcam were target genes of 

interest (Table 2). See Appendices 4 and 5 for detailed protocols.  
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Table 1. Sequence information for primer pair set #1. Primer pair sequences were designed 

for genes potentially affected by, or downstream of, either CXCL12 or CXCL14. These primer 

pairs were used for qPCR experiments. All primer pairs were designed using NCBI Primer 

BLAST. For more information, see Appendix 4. 

 

 

 

 

 

 

 

Primer Design Set #1: Sequence Information 

 Gene Forward Primer Reverse Primer 
Fragment 

size 

Control B-actin 5-TCACCACCACAGCCGAAAG-3 5-AGAGGCAGCGGTTCCCAT-3 98bp 

Control GAPDH 5-GTGTAGGCGTGGACTGTGGT-3 5-TGGGAGTCAACCAGGACAAATA-3 121bp 

   

DT  

of 
CXCL14 

NF-kB 5-GCTCCAGGATGACGTTCAGTA-3 5-CCAGAAAGTCCCGTTGAGGT-3 201 bp 

SCX-a 5-TCAGGGAGGGATGAGAGCAG-3 5-TCTGCTCCAGAGAACCGAGA-3 335 bp 

Pmp22-b 5-TGGAAACGAGGAGCAGAACC-3 5-AGTGAACCTGAGAGGAGGGT-3 496 bp 

Mpz 5-ATTGCGTCCTTAGCCCCATC-3 5-GTGTTTGTATCCTCCAGCCTCT-3 177 bp 

Mbp 5-TGTCCGAGTCAAGTTGCTACA-3 5-GCTTTTGGTTGGGCAGTCAG-3 316 bp 

   

DT  

of 
CXCL12 

OSR1 5-CCTCAATCCCACTGTTCCCC-3 5-AGGCAGGTATGAGCAGGAATG-3 484 bp 

OSR2 5-AGTCTTACTGCCCATTCCCG-3 5-AACCGCTCAAACTGTGTGTTTC-3 116 bp 

COL17A1b 5-TCACTTTGTCACTAATGCCGAT-3 5-TCACCCTTTTCTCCCCTTGG-3 327 bp 
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Table 2. Sequence information for primer pair set #2. Primer pair sequences were designed 

for genes expressed during lateral line development. These primer pairs were used for qPCR 

experiments. All primer pairs were designed using NCBI Primer BLAST. For more information, 

see Appendix 4. 

 

 

 

 

 

 

 

 

Primer Design Set #2: Sequence Information 

 Gene Forward Primer Reverse Primer 
Fragment 

size 

Control B-actin 5’-TCACCACCACAGCCGAAAG-3’ 5-AGAGGCAGCGGTTCCCAT-3 98bp 

Control GAPDH 5’-GTGTAGGCGTGGACTGTGGT-3’ 5’-TGGGAGTCAACCAGGACAAATA-3’ 121 bp 

 

Ligands 

CXCL14-a 5'-TGCAGATGCACAAGAAAAGG-3’ 5'-GGCTTCAAACGTCCTGTGTT-3’ 225 bp 

CXCL12-a 5'-TTCATGCACCGATTTCCAAC-3’ 5'-TGTTGATGGCGTTCTTCAGG-3’ 222 bp 

Receptors 

CXCR4-b 5'-TACGATGTAAGTTGGCTTGTGA-3’ 5'-CTGACTGAGAGGTCGCAAAG-3’ 435 bp 

CXCR7-b 5'-GAGTTGCCACCACACAAAGG-3’ 5'-TGTGCTTAATTGGTCCCTGC-3’ 396 bp 

 

Genes 

expressed in 

neuromasts 

and 

primordium 

Cldn-2 5'-GCGTTTTATTGATTTGCAGGCG-3’ 5'-TTGCTGCCCGTTTTATGTGC-3’ 353 bp 

Snail-1b 5'-CGCTGAAGTTTCGAGGGGAT-3’ 5'-CAGTGTTTGCAGTGGAAGGC-3’ 485 bp 

Epcam 5'-CTGCCCCTGTTTTGGAATGG-3’ 5'-GCGTTTGGAAAACGAGACCTT-3’ 375 bp 
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2.4. Real-time quantitative polymerase chain reaction (RT-qPCR) 

 Total RNAs were extracted from 50 embryos at various embryonic stages: 24, 36, and 48 

hpf using Trizol (Zymo Research, Irvine, CA, USA) reagent. RNA concentrations and purity 

were determined using the NanoDrop 2000 (Thermo Fisher Scientific, Waltham, MA, USA). 

Complementary DNA strands (cDNAs) were synthesized from 1.5 ug of total RNA using the 

Easy-script reverse transcription system (Lamda Biotech Corporation, Ballwin, MO, USA). 

cDNAs were then amplified with gene specific primers and SYBR green reagents (Promega 

Corporation, Madison, WI, USA) in a 7500 real-time quantitative PCR system (Applied 

Biosystems, Foster City, CA, USA).  

Quantitative polymerase chain reactions were used to quantify mRNA gene expression in 

each sample by measuring emitted fluorescence intensity. Reactions were performed under the 

following cycling conditions: pre-denaturation at 95ºC for 10 minutes, followed by 40 cycles of 

95ºC for 15 seconds and 60ºC for 1 minute, then a melting curve cycle at 95ºC for 15 seconds, 

60ºC for 1 minute, 95ºC for 30 seconds, and 60ºC for 15 seconds to confirm amplification 

specificity. Reactions were conducted as single runs, duplicates, and triplicates (Appendix 4). 

qPCR results were used to calculate the variation of gene expression between two samples, also 

known as “relative gene expression.” Amplification products were then electrophoresed on 1% 

agarose gels. See Appendix 4 for detailed protocols and Tables 1 and 2 for primer pairs.  

 

2.5. Calculations and statistical analysis  

 Relative gene expression levels for each sample were determined using the 2-Ct method 

with either GAPDH or β-actin as the reference gene. CT values were averaged to calculate means 

and standard deviation of means per sample. To compare the effects of microinjection on gene 
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expression, data were presented as Log2 mRNA fold-change levels of sham-injected embryos 

relative to non-injected embryos. To compare the effects of morpholino knock-down on gene 

expression, data were presented as Log2 mRNA fold-change levels of morpholino-injected 

embryos relative to sham-injected embryos. All numerical data are presented as relative gene 

expression ± standard deviation.  

CT values were transformed and analyzed by a Mann-Whitney test to determine the 

statistically significant difference between non-injected and sham-injected embryos. CT values 

were also transformed and analyzed by a Mann-Whitney test to determine the statistically 

significant difference between sham-injected embryos and morpholino-injected embryos. P-

values were calculated assuming non-parametric distribution due to limited numbers of samples. 

All data were analyzed using GraphPad Prism 8 software (GraphPad Software, San Diego, CA, 

USA). See Appendix 4 for detailed protocols.  
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RESULTS 

3.1. Gel electrophoresis for amplified PCR products 

 Gel electrophoresis was used to determine RNA and primer pair quality. For RNA gel 

electrophoresis, the 18S rRNA and 16S rRNA bands are clearly depicted at 1550 bp and 1000 

bp, respectively. Clear and distinct bands indicate RNA purity, which coincides with NanoDrop 

results. There does not appear to be any RNA degradation or impurities, therefore the RNA 

extracted from each time point were used for cDNA synthesis reactions.    

 

 

Figure 6. Gel Electrophoresis for RNA samples from Danio rerio zebrafish at 24, 36, and 48 

hpf. The DNA ladder is displayed as “L.” RNA extracted from non-injected embryos at 24 hpf are 

displayed as N-24. RNA extracted from sham-injected and morpholino-injected embryos at 24 hpf 

are displayed as S-24 and M-24, respectively. RNA extracted from non-injected embryos at 36 hpf 

are displayed as N-36. RNA extracted from sham-injected and morpholino-injected embryos at 36 

hpf are displayed as S-36 and M-36, respectively. RNA extracted from non-injected embryos at 

48 hpf are displayed as N-48. RNA extracted from sham-injected and morpholino-injected 

embryos are displayed as S-48 and M-48, respectively. N=50. 
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Figure 7. B-actin gel electrophoresis for Danio rerio zebrafish at 24, 36, and 48 hpf. The DNA 

ladder is displayed as “L.” RNA extracted from non-injected embryos at 24 hpf are displayed as 

N-24. RNA extracted from sham-injected and morpholino-injected embryos at 24 hpf are 

displayed as S-24 and M-24, respectively. RNA extracted from non-injected embryos at 36 hpf are 

displayed as N-36. RNA extracted from sham-injected and morpholino-injected embryos at 36 hpf 

are displayed as S-36 and M-36, respectively. RNA extracted from non-injected embryos at 48 hpf 

are displayed as N-48. RNA extracted from sham-injected and morpholino-injected embryos are 

displayed as S-48 and M-48, respectively. N=50. 

 

 

Figure 8. CXCL12 gel electrophoresis for Danio rerio zebrafish at 24, 36, and 48 hpf. The 

DNA ladder is displayed as “L.” RNA extracted from non-injected embryos at 24 hpf are displayed 

as N-24. RNA extracted from sham-injected and morpholino-injected embryos at 24 hpf are 

displayed as S-24 and M-24, respectively. RNA extracted from non-injected embryos at 36 hpf are 

displayed as N-36. RNA extracted from sham-injected and morpholino-injected embryos at 36 hpf 

are displayed as S-36 and M-36, respectively. RNA extracted from non-injected embryos at 48 hpf 

are displayed as N-48. RNA extracted from sham-injected and morpholino-injected embryos are 

displayed as S-48 and M-48, respectively. N=50. 
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Figure 9. CXCL14 gel electrophoresis for Danio rerio zebrafish at 24, 36, and 48 hpf. The 

DNA ladder is displayed as “L.” RNA extracted from non-injected embryos at 24 hpf are displayed 

as N-24. RNA extracted from sham-injected and morpholino-injected embryos at 24 hpf are 

displayed as S-24 and M-24, respectively. RNA extracted from non-injected embryos at 36 hpf are 

displayed as N-36. RNA extracted from sham-injected and morpholino-injected embryos at 36 hpf 

are displayed as S-36 and M-36, respectively. RNA extracted from non-injected embryos at 48 hpf 

are displayed as N-48. RNA extracted from sham-injected and morpholino-injected embryos are 

displayed as S-48 and M-48, respectively. N=50. 
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3.2. Quantifying the effect of microinjection on gene expression 

The aim of this study was to examine the effects of CXCL14 knock-down on Danio rerio 

gene expression during lateral line development. In order to test our methodology, we first 

analyzed the relationship between microinjections and gene expression. Subsequently, zebrafish 

embryos were microinjected with 1 nl of phenol red buffer without morpholino (sham-injected). 

Microinjected embryos were compared to non-injected embryos at 24, 36, and 48 hpf. RT-qPCR 

was used to determine the mRNA levels of seven zebrafish genes expressed at various time 

points during lateral line development: CXCL12, CXCL14, CXCR4, CXCR7, snail-1b, cldn-2, 

and epcam. Relative gene expression levels were presented as Log2 mRNA levels of sham-

injected embryos relative to non-injected embryos. 

 

Figure 10. Effect of Microinjection on Gene Expression in Danio rerio embryos at 24 hpf. 

RT-qPCR examined the mRNA levels of seven zebrafish genes: CXCL12, CXCL14, CXCR4, 

CXCR7, snail-1b, cldn-2, and epcam expressed at 24 hours post-fertilization (hpf) following 

microinjection with 1 nl of phenol red. Relative gene expression levels were determined using the 

2-Ct method with β-actin as the reference gene. The statistical significance of the data was 

determined by a two-tailed Mann-Whitney test between non-injected and sham-injected embryos 

at 24 hpf. Results were expressed as Log2 mRNA fold-change values ± S.D. (n = 6), *P  0.05.  
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Although the data were not statistically significant, it was observed that microinjection 

with phenol red caused a notable shift in gene expression at 24 hpf (Figure 10). When compared 

to the control (non-injected embryos), sham-injections resulted in a decrease in CXCL12, 

CXCR7, and snail-1b gene expression. More specifically, average mRNA levels for CXCL12 

decreased by 2.17-fold: control (n=6, 𝑥̅= 0-fold change ± 4.734), sham-injection (n=6, 𝑥̅= 2.17-

fold change ± 7.979, p= 0.818). Moreover, average mRNA levels decreased by 4.6-fold for 

CXCR7: control (n=6, 𝑥̅= 0-fold change ± 3.609), sham-injection (n=6, 𝑥̅= 4.6-fold change ± 

4.226, p= 0.818) and by 22.7-fold for snail-1b following microinjection: control (n=6, 𝑥̅= 0-fold 

change ± 5.731), sham-injected (n=6, 𝑥̅= 22.7-fold change ± 5.902, p= 0.309).  

Conversely, it was also observed that sham-injections caused an increase in gene 

expression at 24 hpf (Figure 10). When compared to the control (non-injected embryos), sham-

injections resulted in an increase in CXCL14 and epcam gene expression. Specifically, average 

mRNA levels for CXCL14 increased by 15.2-fold: control (n= 6, 𝑥̅= 0-fold change ±10.647), 

sham-injected (n=6, 𝑥̅= 15.2-fold change ± 8.617, p= 0.24) and by 49.6-fold for epcam following 

microinjection: control (n= 6, 𝑥̅= 0-fold change ± 6.346), sham-injected (n= 6, 𝑥̅= 49.6-fold 

change ± 7.784, p= 0.179).  

When compared to the control, however, CXCR4 mRNA levels did not demonstrate a 

significant decrease in gene expression: control (n= 6, 𝑥̅= 0-fold change ± 2.391), sham-injected 

embryos (n=6, 𝑥̅= 1.22-fold change ± 1.446, p= 0.815). Similarly, cldn-2 mRNA levels did not 

demonstrate a significant increase in gene expression following microinjection: control (n=6, 𝑥̅= 

0-fold change ± 6.346), sham-injected embryos (n=6, 𝑥̅= 0.869-fold change ± 0.55, p= 1.159). 
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Figure 11. Effect of Microinjection on Gene Expression in Danio rerio embryos at 36 hpf. 

RT-qPCR examined the mRNA levels of seven zebrafish genes: CXCL12, CXCL14, CXCR4, 

CXCR7, snail-1b, cldn-2, and epcam expressed at 36 hours post-fertilization (hpf) following 

microinjection with 1 nl of phenol red. Relative gene expression levels were determined using 

the 2-Ct method with β-actin as the reference gene. The statistical significance of the data was 

determined by a two-tailed Mann-Whitney test between non-injected and sham-injected embryos 

at 36 hpf. Results are expressed as Log2 fold-change values ± S.D. (n = 6), *P 0.05 

 

Although the data were not statistically significant, it was observed that microinjection 

with phenol red caused a notable shift in gene expression at 36 hpf (Figure 11). When compared 

to the control (non-injected embryos), sham-injections resulted in increased gene expression for 

both CXCL12 and CXCR7. Average mRNA levels for CXCL12 increased by 2.1-fold (control: 

n=6, 𝑥̅= 0-fold change ± 2.374; sham-injection: n=6, 𝑥̅= 2.1-fold change ± 3.087, p= 0.177) 

whereas CXCR7 gene expression increased by 10.1-fold (control: n=6, 𝑥̅= 0-fold change ± 7.159; 

sham-injected: n=6, 𝑥̅= 10.1-fold change ± 2.95, p= 0.428).  

However, when compared to the control (non-injected embryos), CXCR4 mRNA levels 

did not demonstrate a significant increase in gene expression: control (n=6, 𝑥̅= 0-fold change ± 
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2.029), sham-injection (n=6, 𝑥̅= 1.86-fold change ± 2.986, p= 0.093). Likewise, cldn-2 mRNA 

levels did not demonstrate a significant increase in gene expression following microinjection: 

control (n= 6, 𝑥̅= 0-fold change ± 2.648), sham-injected (n= 6, 𝑥̅= 1.29-fold change ± 3524, p= 

0.121). 

In contrast, it was also observed that sham-injections caused a decrease in snail-1b gene 

expression at 36 hpf: control (n=6, 𝑥̅= 0-fold change ± 5.843), sham-injected (n=6, 𝑥̅= 22-fold 

change ± 6.769, p= 0.818). Although similar trends were demonstrated, CXCL14 and epcam 

mRNA levels did not demonstrate a significant decrease in gene expression when compared to 

the control (non-injected embryos). Specifically, average mRNA levels for CXCL14 only 

decreased by 1.16-fold: control (n= 6, 𝑥̅= 0-fold change ± 4.601), sham-injected (n=6, 𝑥̅= 1.16-

fold change ± 8.989, p= 0.428). Similarly, epcam gene expression only decreased by 1.44-fold: 

control (n= 6, 𝑥̅= 0-fold change ± 8.512), sham-injected (n= 6, 𝑥̅= 1.44-fold change ± 7.874, p= 

0.699).  
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Figure 12. Effect of Microinjection on Gene Expression in Danio rerio embryos at 48 hpf. 

RT-qPCR examined the mRNA levels of seven zebrafish genes: CXCL12, CXCL14, CXCR4, 

CXCR7, snail-1b, cldn-2, and epcam expressed at 48 hours post-fertilization (hpf) following 

microinjection with 1 nl of phenol red. Relative gene expression levels were determined using 

the 2-Ct method with β-actin as the reference gene. The statistical significance of the data was 

determined by a two-tailed Mann-Whitney test between non-injected and sham-injected embryos 

at 48 hpf. Results are expressed as Log2 fold-change values ± S.D. (n = 6), *P 0.05. 

 

Although the data were not statistically significant, it was observed that microinjection 

with phenol red caused a notable shift in gene expression at 48 hpf (Figure 12). When compared 

to the control (non-injected embryos), sham-injections resulted in an increase in gene expression 

for CXCL14, snail-1b, and epcam. More specifically, average mRNA levels for CXCL14 

increased by 3.06-fold (control: n=6, 𝑥̅= 0-fold change ± 6.39), sham-injected (control: n=6, 𝑥̅= 

3.06-fold change ± 7.797, p= 0.064). Moreover, following microinjection, average mRNA levels 

for snail-1b increased by 3.25-fold: control (n= 6, 𝑥̅= 0-fold change ± 7.05), sham-injected (n=6, 

𝑥̅= 3.25-fold change ± 5.782, p= 0.937) and by 4963-fold for epcam: control (n= 6, 𝑥̅= 0-fold 

change ± 9.414), sham-injected (n= 6, 𝑥̅= 4963-fold change ± 9.851, p= 0.309). When compared 
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to the control (non-injected embryos), however, cldn-2 mRNA levels did not demonstrate a 

significant increase in gene expression: control (n=6, 𝑥̅= 0-fold change ± 1.699), sham-injected 

(n=6, 𝑥̅= 1.75-fold change ± 2.465, p= 0.66).  

Conversely, it was also observed that sham-injections caused a decrease in CXCR4 gene 

expression: control (n=6, 𝑥̅= 0-fold change ±3.868), sham-injected (n=6, 𝑥̅= 2.33-fold change ± 

2.192, p= 0.699). Although similar trends were demonstrated, CXCL12 and CXCR7 mRNA 

levels did not demonstrate a significant decrease in gene expression when compared to the 

control (non-injected embryos). Specifically, average mRNA levels for CXCL12 only decreased 

by 1.2-fold: control (n= 6, 𝑥̅= 0-fold change ± 0.866), sham-injected (n=6, 𝑥̅= 1.2-fold change ± 

5.100, p= 0.536) and by 1.36-fold for CXCR7: control (n= 6, 𝑥̅= 0-fold change ± 5.172), sham-

injected (n= 6, 𝑥̅= 1.36-fold change ± 5.337, p= 0.393).  
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Table 3. Summary of mRNA fold-change values for sham-injected embryos relative to non-

injected embryos. Data were presented as fold-change in gene expression ± S.D. *P  0.05. 

 

 It is interesting to note the impact microinjections have on gene expression. Although 

none of the data were statistically significant, there is evidence to support that microinjections 

can affect gene expression (Table 3). Given sham-injection’s ability to interfere with gene 

expression, we decided to compare data from morpholino-injected embryos relative to sham-

Summary of mRNA fold-change values relative to non-injected embryos 

 24 hpf 36 hpf 48 hpf 

CXCL12 Decrease in gene 

expression by  

2.17-fold ± 7.979. 

p= 0.818 

Increase in gene 

expression by 

2.1-fold ± 3.08. 

p= 0.177 

Decrease in gene 

expression by 

1.2-fold ± 5.100. 

p= 0.536 

CXCL14 Increase in gene 

expression by 

15.2-fold ± 8.617. 

p= 0.24 

Decrease in gene 

expression by 

1.16-fold ± 8.989. 

p= 0.428 

Increase in gene 

expression by 

3.06-fold ± 7.797. 

p= 0.064 

CXCR4 Decrease in gene 

expression by 

1.22-fold ± 1.446. 

p= 0.815 

Increase in gene 

expression by 

1.86-fold ± 2.986. 

p= 0.093 

Decrease in gene 

expression by 

2.33-fold ± 2.192. 

p= 0.699 

CXCR7 Decrease in gene 

expression by 

4.6-fold ± 4.226. 

p= 0.818 

Increase in gene 

expression by 

10.1-fold ± 2.95. 

p= 0.428 

Decrease in gene 

expression by 

1.36-fold ± 5.337. 

p= 0.393 

Snail-1b Decrease in gene 

expression by 

22.7-fold ± 5.902. 

p= 0.309 

Decrease in gene 

expression by 

22-fold ± 6.769. 

p= 0.818 

Increase in gene 

expression by 

3.25-fold ± 5.782. 

p= 0.937 

Cldn-2 Increase in gene 

expression by 

0.869-fold ± 0.55. 

p= 1.159 

Increase 

in gene expression by 

1.29-fold ± 3524. 

p= 0.121 

Increase in gene 

expression by 

1.75-fold ± 2.465. 

p= 0.66 

Epcam Increase in gene 

expression by  

49.6-fold ± 7.784. 

p= 0.179 

Decrease in gene 

expression by 

1.44-fold ± 7.874. 

p= 0.699 

Increase in gene 

expression by 

4963-fold ± 9.851. 

p= 0.309 
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injected embryos. This allowed us the opportunity to analyze the difference in injection contents 

and their respective impact on gene expression.  

 

3.3. Quantifying the effect of morpholino injection on gene expression 

Upon analyzing the effects of microinjection on gene expression, we examined the 

relationship between CXCL14 knock-down and Danio rerio gene expression during lateral line 

development. As a result, zebrafish embryos were microinjected with 1 nl of CXCL14 antisense 

morpholino in phenol red buffer. Morpholino-injected embryos were compared to sham-injected 

embryos at 24, 36, and 48 hpf. RT-qPCR was used to determine the mRNA levels of seven 

zebrafish genes expressed at various time points during lateral line development: CXCL12, 

CXCL14, CXCR4, CXCR7, snail-1b, cldn-2, and epcam. Relative gene expression levels were 

presented as Log2 mRNA levels of morpholino-injected embryos relative to sham-injected 

embryos.  
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Figure 13. Effect of Morpholino injections on Gene Expression in Danio rerio embryos at 

24 hpf. RT-qPCR examined the mRNA levels of seven zebrafish genes: CXCL12, CXCL14, 

CXCR4, CXCR7, snail-1b, cldn-2, and epcam expressed at 24 hours post-fertilization (hpf) 

following microinjection with either 1 nl of phenol red (sham) or CXCL14 antisense morpholino 

in phenol red buffer. Relative gene expression levels were determined using the 2-Ct method 

with β-actin as the reference gene. The statistical significance of the data was determined by a 

two-tailed Mann-Whitney test between sham-injected embryos and morpholino-injected embryos 

at 24 hpf. Results were expressed as Log2 fold-change values ± S.D. (n = 6), *P 0.05 

 

When compared to the control (sham-injected embryos), it was observed that 

microinjection with CXCL14 antisense morpholino caused a notable increase in gene expression 

at 24 hpf for five out of the seven genes: CXCL12, CXCR4, CXCR7, snail-1b, and cldn-2 (Figure 

13). After microinjection with CXCL14 antisense morpholino, average mRNA levels increased 

by 3.78-fold for CXCR4: control (n=6, 𝑥̅= 0-fold change ± 1.446), morpholino-injection (n=6, 𝑥̅= 

3.78-fold change ± 1.09, p= 0.309), by 3.78-fold for CXCR7: control (n=6, 𝑥̅= 0-fold change ± 

4.226), morpholino-injected (n=6, 𝑥̅= 3.78-fold change ± 2.023, p= 0.937), and by 267-fold for 
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snail-1b: control (n=6, 𝑥̅= 0-fold change ± 5.902), morpholino-injected (n=6, 𝑥̅= 267-fold 

change ± 6.823, p= 0.179). In particular, CXCL12 gene expression following morpholino-

injections were statistically significant from embryos receiving sham-injections. In comparison 

to controls, average mRNA levels for CXCL12 increased by 12.6-fold: control (n=6, 𝑥̅= 0-fold 

change ± 7.979), morpholino-injection (n=6, 𝑥̅= 12.6-fold change ± 1.147, *p= 0.026). 

Moreover, cldn-2 gene expression following morpholino-injections demonstrated a 3.78-fold 

increase with a modest p-value of 0.056: control (n=6, 𝑥̅= 0-fold change ± 0.550), morpholino-

injected (n=6, 𝑥̅= 3.78-fold change ± 2.434, p= 0.056). 

Compared to the control (sham-injected embryos), CXCL14 and epcam mRNA levels did 

not demonstrate a significant change in gene expression. Following morpholino-injections, 

CXCL14 only demonstrated a 0.99-fold increase in gene expression: control (n=6, 𝑥̅= 0-fold 

change ± 8.617), morpholino-injected (n=6, 𝑥̅= 0.99-fold change ± 3.596, p= 0.588). Likewise, 

epcam mRNA levels only decreased by 1.44-fold following morpholino-injections: control (n=6, 

𝑥̅= 0-fold change ± 7.784), morpholino-injected (n= 6, 𝑥̅= 1.44-fold change ± 8.23, p= 0.699).  

 

 

  



 

 

38 

 

Figure 14. Effect of Morpholino injections on Gene Expression in Danio rerio embryos at 

36 hpf. RT-qPCR examined the mRNA levels of seven zebrafish genes: CXCL12, CXCL14, 

CXCR4, CXCR7, snail-1b, cldn-2, and epcam expressed at 36 hours post-fertilization (hpf) 

following microinjection with either 1 nl of phenol red (sham) or CXCL14 antisense morpholino 

in phenol red buffer. Relative gene expression levels were determined using the 2-Ct method 

with β-actin as the reference gene. The statistical significance of the data was determined by a 

two-tailed Mann-Whitney test between sham-injected embryos and morpholino-injected embryos 

at 36 hpf. Results were expressed as Log2 fold-change values ± S.D. (n = 6), *P 0.05 

 

When compared to the control (sham-injected embryos), it was observed that 

microinjection with CXCL14 antisense morpholino caused a notable increase in gene expression 

at 36 hpf (Figure 14). More specifically, average mRNA levels increased by 5.37-fold for 

CXCL14: control (n=6, 𝑥̅= 0-fold change ± 8.989), morpholino-injection (n=6, 𝑥̅= 5.37-fold 

change ± 8.342, p= 0.792), by 26.6-fold for snail-1b: control (n=6, 𝑥̅= 0-fold change ± 6.769), 

morpholino-injected (n=6, 𝑥̅= 26.6-fold change ± 4.981, p= 0.699), and by 2.47-fold for epcam: 

control (n=6, 𝑥̅= 0-fold change ± 7.874), morpholino-injected (n=6, 𝑥̅= 2.47-fold change ± 

8.403, p= 0.309).  
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In contrast, it was also observed that mRNA levels decreased following morpholino-

injections. In particular, CXCR7 and cldn-2 gene expression for morpholino-injected embryos 

were statistically significant from embryos receiving sham-injections When compared to the 

control, average mRNA levels decreased by 25.6-fold for CXCR7: control (n=6, 𝑥̅= 0-fold 

change ± 2.95), morpholino-injected (n=6, 𝑥̅= 25.6-fold change ± 0, *p= 0.017) and by 1.75-fold 

for cldn-2: control (n=6, 𝑥̅= 0-fold change ± 3.524), morpholino-injected (n=6, 𝑥̅= 1.75-fold 

change ± 2.658, *p= 0.036). Although similar trends were demonstrated, mRNA levels for both 

CXCL12 and CXCR4 only decreased by less than 2-fold. Following morpholino-injections, gene 

expression decreased by 1.85-fold for CXCL12: control (n=6, 𝑥̅= 0-fold change ± 3.087), 

morpholino-injected: (n=6, 𝑥̅= 1.85-fold change ± 1.993, p= 0.930) and by 1.08-fold for CXCR4: 

control (n=6, 𝑥̅= 0-fold change ± 2.986), morpholino-injected: (n=6, 𝑥̅= 1.08-fold change ± 2.36, 

p= 0.179).  

 

 

 

 

 

 

 

 

 



 

 

40 

  

Figure 15. Effect of Morpholino injections on Gene Expression in Danio rerio embryos at 

48 hpf. RT-qPCR examined the mRNA levels of seven zebrafish genes: CXCL12, CXCL14, 

CXCR4, CXCR7, snail-1b, cldn-2, and epcam expressed at 48 hours post-fertilization (hpf) 

following microinjection with either 1 nl of phenol red (sham) or CXCL14 antisense morpholino 

in phenol red. Relative gene expression levels were determined using the 2-Ct method with β-

actin as the reference gene. The statistical significance of the data was determined by a two-

tailed Mann-Whitney test between non-injected embryos and either sham-injected or 

morpholino-injected embryos at 48 hpf. Results were expressed as Log2 fold-change values ± 

S.D. (n = 6), *P 0.05 

 

When compared to the control (sham-injected embryos), it was observed that 

microinjection with CXCL14 antisense morpholino caused a notable increase in gene expression 

at 48 hpf (Figure 15). More specifically, average mRNA levels increased by 49.3-fold for 

CXCR7: control (n=6, 𝑥̅= 0-fold change ± 5.337), morpholino-injected: (n=6, 𝑥̅= 49.3-fold 

change ± 6.655, p= 0.179), by 8.9-fold for snail-1b: control (n=6, 𝑥̅= 0-fold change ± 5.782), 

morpholino-injected: (n=6, 𝑥̅= 8.9-fold change ± 7.866, p= 0.484), and by 3.68-fold for cldn-2: 
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control (n=6, 𝑥̅= 0-fold change ± 2.465), morpholino-injected (n=6, 𝑥̅= 3.68-fold change ± 

6.014, p= 0.937). Although similar trends were demonstrated, average mRNA levels for CXCL14 

only increased by 1.71-fold: control (n=6, 𝑥̅= 0-fold change ± 7.797), morpholino-injected (n=6, 

𝑥̅= 1.71-fold change ± 3.74, p= 0.662). Similarly, when compared to the control, average mRNA 

levels for epcam only increased by 1.99-fold: control (n=6, 𝑥̅= 0-fold change ± 9.851), 

morpholino-injected (n=6, 𝑥̅= 1.99-fold change ± 7.986, p= 0.484).  

In contrast, it was also observed that mRNA levels were not affected by morpholino-

injections at 48 hpf. In particular, CXCL12 and CXCR4 average mRNA levels experienced a 

small decrease in expression (< 2-fold). More specifically, when compared to the control (sham-

injected embryos), CXCL12 gene expression only decreased by 1.07-fold: control (n=6, 𝑥̅= 0-

fold change ± 5.100), morpholino-injected (n=6, 𝑥̅= 1.07-fold change ± 2.083, p= 0.547). 

Likewise, following morpholino-injections, CXCR4 mRNA levels only decreased by 1.21-fold: 

control (n=6, 𝑥̅= 0-fold change ± 2.192), morpholino-injected (n=6, 𝑥̅= 1.21-fold change ± 

2.408, p= 0.309).  
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Table 4. Summary of mRNA fold-change values for CXCL14 antisense morpholino-injected 

embryos relative to sham-injected embryos. Data were presented as fold-change in gene 

expression ± S.D. *P  0.05. 

 

 

 

 

Summary of mRNA fold-change values relative to sham-injected embryos 

 24 hpf 36 hpf 48 hpf 

CXCL12 Increase in gene 

expression by  

12.6-fold ± 1.147. 

*p= 0.026 

Decrease in gene 

expression by  

1.85-fold ± 1.993. 

p= 0.930 

Decrease in gene  

expression by  

1.07-fold ± 2.083. 

p= 0.547 

CXCL14 Increase in gene 

expression by  

0.99-fold ± 3.596. 

p= 0.588 

Increase in gene 

expression by  

5.37-fold ± 8.342. 

p= 0.792 

Increase in gene 

expression by  

1.71-fold ± 3.74. 

p= 0.662 

CXCR4 Increase in gene 

expression by  

3.78-fold ± 1.09. 

p= 0.309 

Decrease in gene 

expression by  

1.08-fold ± 2.36. 

p= 0.179 

Decrease in gene  

expression by  

1.21-fold ± 2.408. 

p= 0.309 

CXCR7 Increase in gene 

expression by  

3.78-fold ± 2.023. 

p= 0.937 

Decrease in gene 

expression by  

25.6-fold ± 0. 

*p= 0.017 

Increase in gene 

 expression by  

49.3-fold ± 6.655. 

p= 0.179 

Snail-1b Increase in gene 

expression by  

267-fold ± 6.823. 

p= 0.179 

Increase in gene 

expression by  

26.6-fold ± 4.981. 

p= 0.699 

Increase in gene  

expression by  

8.9-fold ± 7.866. 

p= 0.484 

Cldn-2 Increase in gene 

expression by  

3.78-fold ± 2.434. 

p= 0.056 

Decrease in gene 

expression by  

1.75-fold ± 2.658. 

*p= 0.036 

Increase in gene  

expression by  

3.68-fold ± 6.014. 

p= 0.937 

Epcam Decrease in gene 

expression by  

1.44-fold ± 8.23. 

p= 0.699 

Increase in gene 

expression by  

2.47-fold ± 8.403. 

p= 0.309 

Increase in gene  

expression by  

1.99-fold ± 7.986. 

p= 0.484 
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DISCUSSION 

The aim of this study was to examine the effects of CXCL14 knock-down on Danio rerio 

gene expression during lateral line development. Zebrafish embryos at the 1-cell stage were 

microinjected with either 1 nl of phenol red or CXCL14 antisense morpholino in phenol red 

buffer. Microinjected embryos were then incubated at 24, 36, and 48 hpf and compared against 

non-injected embryos. To determine the effects of microinjection on gene expression, RT-qPCR 

was used to determine the mRNA levels of seven zebrafish genes during lateral line development 

at 24, 36, and 48 hpf: CXCL12, CXCL14, CXCR4, CXCR7, snail-1b, cldn-2, and epcam. To 

compare the effects of microinjection on gene expression, relative gene expression levels of 

sham-injected embryos were compared to non-injected embryo mRNA levels at 24, 36, and 48 

hpf (Figures 10, 11, and 12). The data were presented as Log2 mRNA levels of injected embryos 

relative to non-injected embryos. To compare the effects of morpholino-injections on gene 

expression, relative gene expression levels of morpholino-injected embryos were compared to 

sham-injected embryo mRNA levels at 24, 36, and 48 hpf (Figures 13, 14, and 15). The data 

were presented as Log2 mRNA levels of injected embryos relative to sham-injected embryos.  

 

4.1. CXCL14 modulating the CXCL12-CXCR4 signaling pathway 

Although the data were not all statistically significant, it can be noted that both sham- and 

morpholino-injections influence gene expression. When comparing CXCL12 gene expression 

between sham- and morpholino-injections, there is a distinct inverse relationship between the 

two. After sham-injections, CXCL12 gene expression decreased by 2.17-fold at 24 hpf, followed 

by 2.1-fold increase at 36 hpf (Figures 10 and 11) whereas after morpholino-injections CXCL12 

gene expression increased by 12.6-fold at 24 hpf before decreasing by 1.8-fold at 36 hpf (Figures 
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13 and 14). The inverse change in CXCL12 gene expression after CXCL14 knockdown indicates 

that CXCL14 is modulating CXCL12 gene expression. These findings coincide with other 

studies examining CXCL14 function relative to CXCL12 activity (Tanegashima and Hara, 2012; 

Tanegashima et. al, 2013).  

A similar trend is also observed with expression of CXCL12’s receptors: CXCR4 and 

CXCR7. Following sham-injections, CXCR4 gene expression decreased by 1.2-fold at 24 hpf, 

followed by a 1.8-fold increase at 36 hpf (Figures 10 and 11). Inversely, morpholino-injected 

embryos had an increase in CXCR4 gene expression by 2.7-fold at 24 hpf, followed by a 1.08-

fold decrease in gene expression at 36 hpf (Figures 13 and 14). This relationship can also be seen 

for CXCR7 gene expression. Following sham-injections, CXCR7 mRNA levels decreased by 4.6-

fold at 24 hpf before increasing by 10.1-fold at 36 hpf (Figures 10 and 11). Whereas after 

CXCL14 morpholino-injections CXCR7 gene expression increased by 3.78-fold at 24 hpf, then 

decreased by 25.6-fold at 36 hpf (Figures 13 and 14). As with CXCL12, this result suggests 

CXCL14 play a role in modulating CXCR4 and CXCR7 mRNA levels. These findings coincide 

with previous studies characterizing CXCR4 and CXCR7 as receptors for CXCL12 

(Tanegashima and Hara, 2012; Tanegashima et. al, 2013).  

Additionally, a notable trend is found between injections for CXCL14. Following sham-

injections, CXCL14 increased gene expression by 15-fold at 24 hpf, followed by a 1.16-fold 

decrease at 36 hpf and later a 3-fold increase at 48 hpf (Figures 10, 11, and 12). More notably, 

these results have an inverse relationship with CXCL12 sham-injection results. This suggests the 

idea that CXCL14 and CXCL12 gene expression modulate each other.  

In addition to CXCL14 modulating CXCL12-CXCR4 and CXCR7 gene expression, we 

have observed a significant change in snail-1b gene expression following CXCL14 knockdown. 
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During sham-injections, snail-1b gene expression steadily increased between 24 hpf and 48 hpf 

(Figures 10, 11, and 12). Following treatment with morpholino-injections, snail-1b gene 

expression decreased by substantial amounts (Figures 13, 14, and 15). Snail 1-b is typically 

found in the leading cells of the lateral line system during development. Our results suggest 

CXCL14’s capability to impact lateral line development outside the CXCL12-CXCR4 signaling 

pathway.    

4.2. Future Research 

This research project could be expanded in several different ways in order to inform our 

understanding of the relationship between CXCL14 modulation of the CXCL12-CXCR4 

signaling pathway and lateral line development. Future studies include a continuation of qPCR 

trials. By running more qPCRs, we can definitively support our claim that CXCL14 is 

modulating the CXCL12-CXCR4 signaling pathway. It will also be important to visualize 

changes in gene expression in morpholino injected embryos. Through in-situ hybridization, we 

can confirm qPCR results by visualizing increased or decreased gene expression of CXCL12, 

CXCR4, and CXCR7 in the lateral line tissues.  This is important because these genes may be 

expressed in other tissues in the embryos, not just the lateral line system. In addition to in-situ 

hybridization, we should examine the morphology of the neuromasts’ cells and sensory neuron 

innervation in sham and morpholino injected embryos to determine if CXCL14 knockdown 

affects the formation or innervation of neuromasts.  Beyond morphological changes, functional 

changes should be examined.  For example, a flow-chamber assay may help provide deeper 

insight on the functional changes occurring after CXCL14-knockdown. By allowing morpholino-

injected embryos to develop into further stages, we can assess their ability to orient themselves in 

moving water. By analyzing their ability to swim in the event of any water-current stimuli, we 
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can determine whether CXCL14 knockdown functionally affects lateral line development in 

zebrafish.  

In conclusion, our study has provided evidence supporting CXCL14 modulation of 

CXCL12 gene expression. Additionally, we provide evidence that CXCL14 modulates both 

CXCR4 and CXCR7 gene expression, thereby suggesting its ability to modulate the CXCL12-

CXCR4 signaling pathway more broadly. Based on our overall findings, we suggest that 

CXCL14 may impact lateral line development. However, further work needs to be done to 

understand the full extent of these relationships. 
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APPENDIX 

Appendix I: Zebrafish Husbandry 

How to Add Water to the Fish System 

* Make sure aged tap water is pre-warmed (28.5ºC) in bucket(s) in the Fish Room before 

starting 

1. Connect the input rubber tube to the output port on the filtration pump (Pentair- Aquatic 

Habitats, Minneapolis, MN, USA) 

2. Connect one end of the intake tube to the input port on the filtration pump 

a. The other end of the intake tube goes into the bucket with pre-warmed aged tap 

water 

3. Lift the clear plastic cover of the “sump” from the fish system (Aquaneering, San Diego, 

CA, USA) to check water levels 

4. Turn on the pump and add water until water level reaches the bottom of the white 

horizontal drain tube in the “sump” area of the fish system 

5. Turn off the pump, remove input and output tubes, and replace the clear plastic cover of 

the sump  

6. Refill water buckets with water from the stainless-steel tanks in the aquarium room so 

there will be pre-warmed water for the next day 

 

  

Pre-warmed 

water 

Intake tube 

Shurflo 

Pump 

Input tube 
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How to Clean Tanks 

1. Lift the tank and allow water to flow down the drain tube 

2. Place the tank on the counter near the sink 

Replace with a new tank 

a. Insert the green baffle and fill the new tank with water from the 

water supply  

b. Use a net to gather fish and place them inside the fresh, clean 

tank 

i. Place the tank in the corresponding spot- ensure 

zebrafish birthdates and tank number are displayed on 

the front of the tank 

c. Ensure the “hose” is in the second hole of the lid 

d. Place the funnel in the first hole of the lid 

e. Place the food feeder above the funnel and screw 

tightly 

i. Ensure the feeder is aligned with the funnel so 

that the food falls through the funnel and into 

the tank 

3. Dump the water from the dirty tank down the drain  

4. Rinse the tank with tap water 

a. Pour bleach into the tank 

i. Enough to barely fill the bottom of the tank 

1 mL of bleach for every 50 mL of H2O 

5. Fill the tank with water 

a. Careful not to fill the tank all the way since it needs to be moved from the counter 

and onto the shelf 

i. DO NOT SPILL THIS WATER INTO ANY OF THE BUCKETS 

6. Carefully place the tank on the back of the bottom shelf 

7. Fill the rest of the tank with water using a plastic cup 

a. You want the bleach to reach the overhang 

i. The tank is in the far back so that the bleach water from the overhang can 

run down the back of the wall and into the drain 

8. Rinse the lid and baffle with dI water and place it in the tank 

9. Allow the tank to be submerged in bleach water for at least 24 hours 

10. After the 24 hours have passed, rinse the tank and its parts with tap water, then rinse them 

with dI water at least 3 times 

11. Leave items on the shelf to air dry 

  

 feeder 
Water supply 
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Appendix II: Preparing Solutions 

How to make 1x Danieau solution 

1. Gather reagents to make 1x Danieau solution 

 

 

 

 

 

 

 

2. Calculate the amounts of reagents needed to make 5 mL of 1x Danieau solution 

1 M= 1000 mM 

1 mL= 1000 ul 

 Stock [concentration] x stock volume = Final [concentration] x final volume (5 mL) 

• NaCl 

      5000 mM (x) = 58 mM (5 mL) → x= (290 mM/mL)/5000 mM → 0.058 mL or 58 ul 

• KCl 

      3000 mM (x) = 0.7 mM (5 mL) → x= (3.5 mM/mL)/ 3000 mM → 0.0011 mL or 1.166 ul  

                                or 11.66 ul from a 1:10 dilution 

• MgSO4 

100 mM (x) = 0.4 mM (5 mL) → x= (2 mM/mL)/ 100 mM → 0.02 mL → 20 ul 

• Ca (NO3)2 

100 mM (x) = 0.6 mM (5 mL) → x= (3 mM/mL)/ 100 mM → 0.03 mL → 30 ul 

• HEPES 

500 mM (x) = 5 mM (5 mL) → x= (25 mM/mL)/ 500 mM → 0.05 mL → 50 ul 

Total: 169.66 ul 

• Milli Q water 

5 mL → 5000 ul- 169.66 ul reagents = 4830.34 ul Milli Q 

Stock 

Concentration 
Concentration needed 

5 M 58 mM NaCl 

3 M 0.7 mM KCl 

100 mM 0.4 mM MgSO4 

100 mM 0.6 mM Ca (NO3)2 

0.5 M 5 mM HEPES pH 7.6 
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How to Resuspend Morpholino 

1. Find morpholino (Gene Tools, LLC., Philomath, OR, USA)  

a. Stock solution of SCYBA 2: 300 nmol freeze dried 

b. Sequence: 5’- CCGTACTACAGCGATTCATCCCCAA-3’ 

2. Resuspend morpholino in 250 ul of 1x Danieau solution 

a. DO NOT VORTEX OR SHAKE VIAL 

i. Swirl the solution by slowing turning the vial around the sides, then up 

and down 

1. This ensures that the 1x Danieau solution reaches the freeze-dried 

powder on the cap and around the vial 

3. Parafilm the morpholino vial and let it sit in the fridge for roughly 30 minutes 

4. Aliquot the morpholino and label. Store stock solution and aliquots in “Scyba MO box” 

in -20 ºC 

 

 

 

 

 

 

 

5. When microinjecting morpholino, make sure it is 1 nL in volume  

a. Between two lines in width (0.2 mm in width) 

 

 

Morpholino Troubleshooting Guide 

1. Accidentally pipetted 1,100 ul of Danieau solution, making morpholino 4x too dilute 

a. Decided to lyophilize morpholino   

i. Placed morpholino in -80 ºC freezer 

ii. When frozen, put morpholino on counter and parafilm it 

1. Poke 5 little holes in the parafilm then place cap on vial 

iii. Place vial in lyophilizing container 

1. Cushion vial with paper towels 

iv. Turn lyophilizing machine on and set temperature to -80 ºC 

v. Add the lyophilizing container (with the cap on) and attach it to the tube 

vi. Leave on overnight 

*Vial now contains morpholino and salts from Danieau solution. Resuspend morpholino      

with 250 ul Milli Q H2O and follow “How to Make Resuspend Morpholino” protocol 

Number of 

Aliquots 
Amount 

1 100 ul aliquot (remains in vial) 

1 50 ul aliquot 

1 25 ul aliquot 

15 5 ul aliquot 
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How to make 1x E3 Buffer for Standard work with Embryos 

1. Find 50x E3 buffer in 4 ºC fridge 

2. Rinse 1x E3 bottle with dI H2O 

3. Calculate the amount of 50x E3 needed to make 1000 mL of 1x E3 buffer 

         Stock              Final 

 (50x E3) (x) = (1x) (1000 mL) 

       x = (1000x/ mL)/ 50x 

       x = 20 mL 

4. Add 20 mL of 50x E3 buffer to 980 mL of dI H2O to make 1L (1000 mL) of 1x E3 

5. Store 1x E3 buffer in Fish Room for embryo isolation and in lab for embryo maintenance  

 

*Key points: E3 can be made up as a 60x stock. The 1x medium keeps under non-sterile 

conditions at room temperature for over a week. 60x E3 stock contains methylene blue. When 

zebrafish embryos are kept in 1x E3 buffer, they contain the methylene blue reagent, which 

suppresses fungal outbreaks in Petri dishes in the event that an egg goes bad.  
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Appendix III: Embryo Isolation and Injection 

How to Set-Up Mating 

1. Select a tank (Aquaneering, San Diego, CA, USA) between 2:00 pm – 4:00 pm  

a. This allows for adequate hormone build up 

b. Follow the order on the “Tank Mating List” in the Fish Room 

i. Fish will need a 3-5 day rest period before another mating can be set up 

2. Retrieve the tank 

a. Remove the automatic feeder (Penn Plax Inc., Memphis, TN, USA)  

i. Unscrew the light blue knob and remove the feeder  

b. Turn off the water supply for that tank. Lift the tank by the 

front side 

i. This lowers the water level which prevents a mess 

from happening when you take the tank out 

c. Remove the tank 

i. Lift the tank up and over the drain pipe  

d. Place the tank on the counter near the sink 

3. Set up the Mating Tank 

a. Grab the two mating tank components (Pentair- Aquatic 

Habitats, Minneapolis, MN, USA)  

i. Clear, plastic tank (#1) 

ii. Clear, plastic tank with holes on the bottom (#2) 

b. Insert the 2nd container into the first 

i. This allows the fish to lay eggs that can be 

collected easily. The eggs will sink to the 

bottom, passing through the holes at the bottom 

of container #2, and kept isolated in container 

#1.  

c. Fill the mating tank with water from the main tank set up (filtered aged tap water) 

4. Transfer fish to the mating tank  

a. Using a small black net, capture the fish and transfer them 

to the mating tank 

b. Using a divider, separate the fish by sex (male or female)  

c. Place a lid on top of the tank and put them on the shelf. 

i. If mating more than one tank, label it with the number  

corresponding to the tank (#1-6) 
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Male Female 
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Figure 1: Distinct characteristics between Male and Female Zebrafish 

 

 

 

 

 

 

 

 

        

 

 

 

 

 

5. Clean up  

a. Rinse the net with dI H2O before returning 

b. If the original tank is clean, return it to its designated area and turn H2O back on 

c. If the original tank is dirty, following “How to Clean Tanks” protocol 

d. Feed fish after separating them in mating chamber or around 8:00 pm 

6. Pull the divider at 9:00 am and isolate embryos- see “How to Microinject Embryos” 

* If they do not lay at or around 9:30 am, check “Embryo Collection Troubleshooting 

Guide” 

 

** Significant changes 

• Fish were cycled as they aged 

o A few days into the project (June 2018), 12 zebrafish were brought into 

our facility. Following a 2-3 weeks acclimation period, zebrafish were 

used for mating purposes. The 12 zebrafish were separated into two tanks: 

three males and three females in each tank 

o Fish over a year old were euthanized and replaced with newer fish 

o Four months into the project (October 2018), 6 zebrafish (3 males and 3 

females) were brought into our facility. Following a 2-3 weeks 

acclimation period, zebrafish were used for mating purposes.  

• There are currently only four tanks 

o Each tank contains three males and three females 

• Nine months into the project, the light-dark cycle changed from “9:30 am- 11:30 

pm” to “9:00am- 11:00 pm” 

• Ten months into the project, the light-dark cycle changed from being dial 

operated to analog operated  

o This ensures better accuracy of light-dark cycle 
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Embryo Collection Troubleshooting Guide 

1. Pull divider at 9:00 am 

2. Check for embryos at 9:30 am 

a. If there are embryos, follow protocol 

b. If there aren’t any embryos, check again in 30 minutes 

3. Check for embryos at 10:00 am 

a. If there are embryos, follow protocol 

b. If there aren’t any embryos, check again in 30 minutes 

4. Check for embryos at 10:30 am 

a. If there are embryos, follow protocol 

b. If there aren’t any embryos, check again in 30 minutes 

5. Check for embryos at 11:00 

a. If there are embryos, follow protocol 

b. If there aren’t any embryos, check again in 30 minutes 

6. Check for embryos at 11:30 am 

a. If there are embryos, follow protocol 

b. If there aren’t any embryos, check again in 30 minutes 

7. Check for embryos at 12:00 pm 

a. If there are embryos, follow protocol 

b. If there aren’t any embryos, return zebrafish to original tank and rinse mating 

chamber with dI H2O 

i. Record “no” under “embryos?” in the “Tank mating sheet” kept in the 

Fish Room 

8. Check to see if food funnels are clogged 

9. Check if automatic feeders are adequately filled with food 

10. Check if feeders are aligned to funnels 

11. Ensure tanks are clean and the “sump” is adequately filled 

a. For instructions, please see “How to Clean Tanks” and “How to Add Water to the 

Fish System” 

 

 

 

 

 

 

 

 
Sump 
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How to Microinject Embryos 

1. Pulling and loading needles- See Figure 2 

a. Take a Borosil 1.0 MM OD x 0.5 MM ID capillary tube (FHC Inc., Bowdoin, 

ME, USA) 

b. Insert the capillary tube into the grooves of the Heka Pipette Puller (Heka 

Instruments, Bellmore, NY, USA) 

i. Go as far down the groove as it can go without dropping it 

c. Tighten the first yellow bar 

d. Lift the second yellow bar to spacer disk setting 12 

i. Tighten the second yellow bar and remove spacer disk 

e. Flip switch to “A,” turn power on, and hit START 

i. Red coil appears when heating then cools back down 

f. Flip switch to “off,” loosen the first yellow bar and lift it to spacer disk setting 5 

i. Tighten the yellow bar and remove spacer disk 

g. Flip switch to “B” and hit START 

i. The coil will turn red when heating, then cool down 

h. Loosen the first yellow bar 

i. Remove top pipette 

1. Dispose of this pipette in “sharps” box 

i. Loosen the bottom yellow bar while holding onto the pipette 

i. Carefully remove the pipette 

1. THIS NEEDLE WILL BE USED FOR MICROINJECTING 

EMBRYOS 

j. Place newly made pipette on clay (let it hang from the shelf) until ready to load 

i. When you are ready, use a P2 pipette to pipette 1.5 ul of what you will 

inject into the embryos 

1. For Morpholino, follow Step #2 

2. For Sham injection (phenol red), follow Step #3 

2. Preparing Morpholino injections 

a. Go to freezer (-20°C) and find “Scyba MO” box (3rd shelf) 

b. Pick a 5 ul aliquot of Morpholino (Gene Tools LLC., Philomath, OR, USA) and 

put box back in the freezer 

c. Add 5 ul of phenol red injection buffer (Sigma-Aldrich, St. Louis, MO, USA) to 

the morpholino aliquot to make the final volume 10 ul 

d. Quick spin in centrifuge (SciLogex LLC, Rocky Hill, CT, USA) 

e. Load the pipette that was made in the pipette puller with 1.5 ul of Morpholino 

i. Let the Morpholino reach the tip of the needle 

f. Cover Eppendorf cap with parafilm and store the MO solution in the 4°C fridge 

i. This is to prevent evaporation 

                                    *For information on morpholino, see “How to Resuspend Morpholino” 
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3. Preparing Sham injections 

a. Add 5 ul of 1x Danieau solution to 5 ul of phenol red (1:1 ratio) 

*This is a troubleshooting attempt to prevent high levels of embryo mortality 

i. Originally, you would only use phenol red as the injection buffer. This 

resulted in high levels of embryo mortality. Since morpholino is 

resuspended in 1x Danieau solution, we decided to mix equal parts of 

phenol red with equal parts of 1x Danieau solution.  

ii. For instructions, see “How to make 1x Danieau solution”  

4. Microinjection Set-up- See Figures 2 and 3 

a. Turn on Fiber-Lite High Intensity Illuminator Series 180 (Dolan-Jenner 

Industries, Boxborough, MA, USA) 

i. Keep intensity at “4” 

ii. This is the microscope light 

b. Turn on Leitz AC volts light source (E. Leitz Inc., New York, NY, USA) 

c. Turn on Picospritzer III (Parker Hannifin Corporation, Pine Brook, NJ, USA) 

i. Turn switch to “MSEC” 

1. This is milliseconds 

ii. This controls the duration at which microinjection occurs 

d. Turn on gas tank (Airgas Inc., Radnor, PA, USA)  

i. This allows air to pass through the pipette for microinjection 

e. Carefully insert the pipette from Step 1 into the micromanipulator (Narishige 

International Inc., Amityville, NY, USA) 

i. Make sure it is loaded- either Step 2 or 3 

5. Mineral Oil Test 

a. Once the pipette is inserted into the micromanipulator, run the very tip of the 

needle against a small pumice stone  

*This is a change that results in a more controlled break of the tip. Before, 

you would use a pair of forceps to make a small break at the tip of the 

needle. By using a pumice stone, you simply run it against the stone softly. 

b. Use a P2 pipette tip to “scoop” a large drop of mineral oil  

c. Add the drop of mineral oil onto the middle of the black circle in the mineral oil 

slide.  

i. The mineral oil slide is kept in a small black case in the drawer labelled 

“Microinjection supplies” 

d. Bring the micromanipulator close to the microscope so that the needle is in the 

mineral oil 

i. Adjust as necessary 

e. Step on the foot pedal (located under the bench). Air will pump through the 

needle and onto the mineral oil slide 
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i. Depending on how big your bubble is, decide if the pipette is fine or needs 

to be broken a bit more 

ii. Worst case scenario, your needle breaks more than you anticipated and 

you will need to start the process over 

iii. Ideally, you want the bubble to be between 2 spaces in width (2 spaces in 

width= 1 ng/nl) 

0.1 mm= 0.5 nl, so 0.2 mm= 1 nl 

f. Once you have your ideal needle, bring the embryos and store mineral oil slide in 

drawer labelled “Microinjection supplies” 

i. Clean off the mineral oil that is on the slide with a kimwipe (Kimtech Inc., 

Vaughan, Ontario, CA) and put it back in its case 

6. Isolating Embryos 

a. Pull the mating tank from the shelf and place it on the counter 

b. Fill a separate mating chamber (just the container without holes at the bottom) 

with filtered aged tap water. Place this mating chamber on the counter near the 

sink 

c. Lift the container with holes in the bottom and transfer it to a new mating 

chamber 

i. This allows you to continue collecting embryos in case the zebrafish are 

not done laying  

d. Grab the fine strainer and hold it over the sink 

e. Pour water from the mating tank through the strainer and into the sink 

i. Since you are using a fine strainer, the embryos are just big enough to not 

flow though.  

ii. Since some debris will stick around, use a squirt bottle to remove feces, 

debris, etc. from the strainer 

1. The squirt bottle should always be filled with 1x E3 buffer and 

kept in the fish room  

a. For instructions, please see “How to Make 1x E3 Buffer” 

f. Once there are only embryos in the strainer, grab a 100 x 15 mm petri dish (VWR 

International, Radnor, PA, USA) and add some 1x E3 buffer to the dish 

g. Flip the strainer over the dish. Using the squirt bottle to push the embryos from 

the strainer onto the dish 

i. The force of the squirt is enough to push the embryos off the strainer and 

into the petri dish 

h. Cover the petri dish with a lid and label (AC, date, time, tank #) 

i. Record “Yes” under “embryos?” for corresponding tank number on the sheet 

j. Place the mating chamber back on the shelf 

i. Zebrafish typically lay every 20-30 minutes for a set period of time 

1. If not, please see “Embryo Isolation Troubleshooting Guide” 
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k. Microinject embryos 30 minutes after laying to ensure proper injection 

7. Injecting Embryos- See Figure 4 

a. Grab a P1000 and a P1000 pipette tip 

i. Cut the end of the pipette tip to make the opening larger 

b. In a drawer labelled “Microinjection supplies,” grab a petri dish and put a normal 

slide inside 

c. Using the P1000, pipette embryos onto the petri dish along the edge of the slide 

i. Tilt the dish to the side so water flows through the slide, leaving embryos 

aligned along the straight edge 

1. Remove water as necessary 

d. Once all the embryos are aligned, place the petri dish under the microscope and 

bring the micromanipulator (with the loaded pipette) to the microscope and dish 

e. Use the microscope to adjust the needle so it can puncture the embryo at the right 

spot in the yolk- see Figure 4 

i. Careful to adjust the needle as much as possible before puncturing the 

embryo. If you adjust the needle while it is in the embryo, you will cause 

significant damage. Align it to where the needle will puncture into the 

yolk, not just the chorion itself 

f. Hit the foot pedal and air will pump through the pipette to inject the embryo 

i. To see if the embryo is injected, look in the microscope. Embryos should 

have a spot of pink-red hue inside 

g. Go down the line of embryos by moving the dish to and from the pipette and 

inject all the embryos 

h. Once all the embryos are injected, use forceps to lift the slide off the dish 

i. Begin by lifting the corner of the slide. Once the slide is upright, hold it 

steady with your fingers and lift up 

ii. Be careful not to damage any embryos in the process. To avoid this, do not 

drop the slide after it is in an upright position.  

iii. If any embryos are stuck to the slide, use a squirt bottle with 1x E3 buffer 

to push them back onto the dish.  

i. Fill the petri dish with 1x E3 buffer and put a lid on it. Label the lid (AC, date, 

time, # of embryos, type of injection, incubation period) 

j. Keep the petri dish in the 28°C incubator (Benchmark Scientific Inc., Sayreville, 

NJ, USA)  

k. Repeat this process for every batch of embryos you get. Be sure to isolate and 

inject embryos 20-30 minutes after they have been laid.  

i. This is to ensure embryos are injected at the 1-cell stage 

8. Turn it off 

a. Turn off Fiber-Lite High Intensity Illuminator and Leitz AC volts light sources 

b. Flip switch to “MIN” in PICOSPRITZER III 
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c. Turn off Airgas 

d. Discard needle into “sharps” box 

e. Hit the foot pedal. The gas should release for 1 minute 

i. Gas valves should go down to zero 

f. Turn off PICOSPRITZER III and flip switch back to “MSEC” 

9. Make sure zebrafish are put back into the original tank  

a. Turn the water for the original tank off. Place the tank on the counter. Remove the 

lid. 

b. Lift the mating tank (with holes on the bottom) and align it to the original tank 

c. Tilt the mating tank so that the fish can go back in the tank 

d. Place the lid back on the original tank and return it to its designated area  

e. Turn the water supply back on, place the food funnel in the designated area and 

align the automatic fish feeder above the funnel 

i. Ensure that the feeder is full of food and aligned properly 

10. Rinse and air dry 

a. Rinse mating tanks (both containers) and strainer with dI H2O. Allow them to air 

dry on rack 

11. Periodically check on embryos 

a. Ensure they have fresh 1x E3 buffer 

b. Remove any unviable embryos 

c. Remove any hyphae growing and replace buffer with fresh 1x E3 buffer. 
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Figure 2: Pulling Pipettes 
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Figure 3: Microinjection Station 

 

Figure 4: Microinjecting Embryos 

 

 

 

 

 

 

 

 

Figure 4. Microinjecting Embryos. (A) Align embryos along the edge of a microscope slide 

inside a petri dish. (B) Adjust the microinjection needle to where it can puncture the embryo at 

the right spot inside the yolk. (C) Microinject embryos at the one-cell stage (30 minutes post-

fertilization) inside the yolk by the cell.  
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Appendix IV. Molecular Techniques 

RNAse-Free Zone 

1. Obtain a 1500 mL flask and dilute 10 M NaOH into 0.2 M concentration 

a. M1V1= M2V2 

i. (1400 mL) (0.2 M) = (10 M) (?) 

ii. 280 M/mL = (10 M) (?) → (280/10 M) 

iii. V2= 28 mL 

2. Use a pipette gun and 10 mL “baked for RNA work” pipettes to pipette 28 mL of 10 M 

NaOH into the empty flask.  

a. Discard pipette in 2% bacdown 5/24 pipette jar 

3. Add 1372 mL deionized H2O into the flask and swirl 

4. Pour solution into a 1500 mL beaker  

5. Take pipettes apart 

a. Let pipette barrels soak in 0.2 M NaOH for ~1 hour 

6. Obtain 1000 mL of 95% EtOH  

7. After ~1 hour of pipette barrels soaking in 0.2 M NaOH, pour 0.2 M NaOH solution into 

the original 1500 mL flask. Label (0.2 M NaOH + dI H2O AC 6/14) 

8. Rinse beaker and pipette barrels with Milli Q H2O 

9.  Transfer 1000 mL EtOH from the flask into the beaker 

a. Let pipette barrels soak in 95% EtOH for ~30 minutes 

10. After soaking in 95% EtOH for ~30 minutes, rinse pipette barrels with Milli Q H2O and 

leave to air dry in RNAse-free zone 

11. Transfer 95% EtOH from beaker into the original flask and label (95% EtOH AC 6/14) 

12. Rinse beaker with Milli Q H2O and leave to air dry  

13. Wipe down RNAse-free area thoroughly  

a. Wipe pipette parts, boxes of pipette tips, bottles with solutions, tubes with 

solutions, gel box, gel tray, gel comb, lab bench, etc… with 0.2 M NaOH 

b. Following 0.2 M NaOH treatment, wipe items and bench space with 95% EtOH 

and leave them to air dry  

*Key Points: NaOH degrades RNases, 95% EtOH gets rid of base and sterilizes everything 
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RNA Isolation 

RNA isolation prepared using the Direct-zol RNA Mini Prep kit (Zymo Research, Irvine, CA, 

USA) in an RNAse-free station with aerosol-resistant pipette tips 

** All centrifugation steps are done at 10,000-16,000 x g for 30 seconds 

1. Add ethanol to buffers (this step only needs to be done once) 

a. Add 10 mL of 95-100% EtOH to “Direct-zol RNA Pre-Wash 

b. Add 48 mL of 100% EtOH to “Direct-zol RNA Wash Buffer” 

i. Use the pipette gun and a 10 mL baked pipette to add 100% ethanol  

1. Discard pipette in 2% bacdown pipette jar 

2. Check embryos under microscope 

a. Discard any ruptured, unfertilized, or unviable embryos. Ensure proper incubation 

period is achieved before proceeding 

3. Lyse and homogenize embryos in appropriate volume of TRI Reagent 

a. For cells  106, add 250 ul TRI Reagent 

i. 50 embryos are needed per incubation period within each time point 

(Peterson and Freeman, 2009) 

1. If there are less than 50, preserve them using dry ice and ethanol. 

For instructions, see “RNA Isolation Troubleshooting Guide” 

ii. Homogenize embryos with baked RNAse-free homogenizers 

4. Centrifuge sample to remove particulate debris and transfer the supernatant into a new, 

RNAse-free Eppendorf tube 

5. Add an equal volume of 95-100% ethanol to the supernatant (250 ul) and mix thoroughly 

6. Transfer solution into a Zymo-Spin IIC Column in a collection tube and centrifuge  

a. Discard flow through 

7. DNAse I Treatment 

a. Add 400 ul of RNA Wash Buffer to the column and centrifuge 

i. Discard flow through 

b. In RNAse-free Eppendorf tube, add 5 ul of DNAse I and 75 ul of DNA Digestion 

Buffer. Mix thoroughly 

i. Add the mix directly to the column matrix. Careful not to puncture column 

c. Incubate at room temperature for 15 minutes  

8. Following the incubation period, add 400 ul of Direct-zol RNA Pre-Wash to the column 

and centrifuge 

a. Discard flow through 

9. REPEAT STEP #8 

10. Add 700 ul of RNA Wash Buffer to the column and centrifuge for 2 minutes to ensure 

complete removal of the wash buffer 

11. Transfer column into an RNAse-free tube. Label (AC RNA #, date, type of injection) 

12. To elute RNA, add 100 ul DNAse/RNAse-free H2O to the column matrix and centrifuge 
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13. Record RNA concentration and purity using the NanoDrop (Thermo Fisher Scientific, 

Waltham, MA, USA)  

a. For list of RNA concentrations, please see “How to use the NanoDrop” 

14. Store RNA in -80°C freezer, Room #312 

a. Stored in “Section 3, Row 2” in the box labelled “Ariana Embryo Work” 

15. Once you have RNA isolated from every time point and injection, run an RNA gel  

a. By loading RNA into a gel, we can visualize and compare the size of the bands to 

the concentration values from the Nanodrop. This is also used as a quality control 

method to determine whether RNA is degraded or not.  

i. For instructions, please see “Gel Electrophoresis” 

 

RNA Isolation Troubleshooting Guide 

1. Based off the literature, 50 zebrafish embryos are needed for RNA isolation (Peterson and 

Freeman, 2009) 

2. If there are not enough viable embryos to fulfill this requirement, freeze embryos with dry ice 

and store in -80°C freezer 

a. After several attempts, it can be concluded that the appropriate amount of ethanol 

should be added in before flash freezing embryos with dry ice. 

3. DO NOT FLASH-FREEZE EMBRYOS IN TRIZOL.  

a. This resulted in low RNA concentration 

250 ul Trizol or Ethanol/ 50 embryos= 5 ul of Trizol or Ethanol per embryo 

 

How to Bake Homogenizers 

1. Select three glass homogenizers            

a. Assign one homogenizer for each type of injection: non-injected, sham injected, 

and morpholino injected 

2. Rinse with soap and dI H2O after each use 

3. Allow homogenizers to air dry 

4. Once dry, wrap homogenizers and respective pestles in aluminum foil 

a. To denote “morpholino-injected” pestle and homogenizer, color the end of the 

aluminum foil with a red sharpie 

5. Place the pestles and homogenizers (wrapped in aluminum) in the oven (Blue M Electric, 

Blue Island, IL, USA) located in the stockroom 

6. Set time for 6.5 hours to allow for proper elimination of DNA nucleases 

a. It takes ~1 hour to reach the temperature necessary to get rid of nucleases. The 

oven needs 4 hours to bake. This method is used for dry, hot sterilization 

7. Handle with gloves and keep in an RNAse-free station  
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How to use the Nanodrop 

1. Take an RNAse-free pipette and P2 aerosol-resistant pipette tips. Keep RNA on ice. 

Wear gloves at all times 

a. Go to room #330A to use the NanoDrop (Thermo Fisher Scientific, Waltham, MA, 

USA) 

2. Go to the computer, click “start” and select “NanoDrop 2000” 

3. You will be taken to the NanoDrop homepage. For RNA analysis, click “Nucleic Acid” 

4. On the right-hand side of the screen is “type.” Click it and find “RNA.” Choose this 

option 

5. For “sample ID,” type “Milli Q” and load the blank solution 

a. Pipette 1 ul RNAse-free Milli Q on the nanodrop platform 

b. Lower the arm pedestal 

6. Click on “blank” 

a. Now that the NanoDrop is cleaned and blanked, lift the arm pedestal and wipe the 

upper (arm) and lower (platform) pedestal with a kimwipe 

b. Be sure to clean the pedestal with a clean kimwipe after each sample is measured, 

even if it is just Milli Q.  

7. For safe measure, load 1 ul of Milli Q H2O and measure  

8. Clean pedestal and load 1 ul of RNA sample 

a. Type “RNA #, date, type of injection” for “sample ID” 

b. Pull down the arm and click on the “measure” button 

9. Lift the arm up, wipe the pedestal, and load 1 ul of Milli Q H2O 

a. Pull the arm down and click on the “measure” button 

10. Clean the pedestal and repeat steps #7-9 until all RNA samples are measured. If there are 

no more RNA samples left to measure, end the process by loading 1 ul of Milli Q H2O 

and wiping the pedestal 

11. Record and save data 

a. To save the data, go to “Report” and highlight the samples you want to save 

b. Click on the “export” button 

c. Where it says “My Documents,” click the drop down arrow and select “Nanodrop 

data” 

d. Create a new folder (Ariana- Wall RNA) 

e. For “filename,” type “RNA #, Date, Type of injection” 

f. For “save as,” select “Spectra New Workbook (*.twbk) and click “save”  

g. Close out of the program and store RNA in the -80°C freezer 

*Key points: The NanoDrop is used to measure RNA concentration and purity. Ideally, an RNA 

A260/280 ratio around 1.8-2.0 indicates pure RNA. By having RNA concentrations (ng/ul), we 

can calculate how much RNA to use for cDNA synthesis. This ensures an equal amount of RNA 

is pipetted into each tube for cDNA synthesis.  
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RNA Batch #1 

  

 

 

 

 

 

 

 

        

*Added 48-hour time point in October 2018 

Date 
Type of 

Injection 
Time Point RNA # 

Nucleic acid 

concentration 
A260/280 

7/5 Sham 24 hr 1 155.1 ng/ul 2.04 

7/19 Non 36 hr 2 274.7 ng/ul 2.02 

7/23 Morpholino 24 hr 4 136.3 ng/ul 2.06 

7/23 Morpholino 36 hr 5 151.6 ng/ul 2.05 

7/24 Sham 36 hr 6 90.2 ng/ul 2.10 

7/25 Non 24 hr 3 188.8 ng/ul 2.05 

7/31 Sham 36 hr 6 153.7 ng/ul 2.02 

10/1 Non 48 hr 7 69.0 ng/ul 2.06 

10/1 Sham  48 hr 8 337.6 ng/ul 2.00 

10/1 Morpholino 48 hr 9 9.8 ng/ul 2.09 

10/16 Non 48 hr 7 145.6 ng/ul 2.04 

10/16 Morpholino 48 hr 9 145.8 ng/ul 2.01 
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RNA Batch #2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RNA Batch #3 

 

 

 

 

 

 

 

 

 

 

 

Date 
Type of 

Injection 
Time Point RNA # 

Nucleic acid 

concentration 
A260/280 

1/14 Non 24 hr 3 150.5 ng/ul 2.03 

1/14 Morpholino 24 hr 4 109.0 ng/ul 2.05 

1/14 Sham 48 hr 8 142.8 ng/ul 1.99 

1/15 Non 36 hr 2 245.2 ng/ul 2.03 

1/15 Morpholino 36 hr 5 162.3 ng/ul 2.01 

1/15 Non 48 hr 7a 278.7 ng/ul 1.99 

1/15 Non 48 hr 7b 205.7 ng/ul 1.99 

1/15 Non 48 hr 7c 212.8 ng/ul 1.98 

1/15 Non 48 hr 7d 295.1 ng/ul 1.94 

1/13 Sham 24 hr 1 163.4 ng/ul 1.99 

2/11 Sham 36 hr 6 236.2 ng/ul 2.01 

2/11 Morpholino 48 hr 9 193.7 ng/ul 2.00 

Date 
Type of 

Injection 

Time 

Point 
RNA # 

Nucleic acid 

concentration 
A260/280 

2/11 Non 36 hr 2 274.0 ng/ul 2.00 

3/30 Non 24 hr 3 284.3 ng/ul 2.00 

3/30 Sham 24 hr 1 270.0 ng/ul 2.03 

3/30 Morpholino 24 hr 4 205.7 ng/ul 2.05 
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cDNA Synthesis 

*Synthesize cDNA in an RNAse-free environment. Use aerosol resistant barrier pipette tips 

1. Calculate the amount of RNA (ul) needed for the cDNA synthesis reaction 

a. Calculations 

Volume for cDNA synthesis (x ul) * [sample] = 1500 ng (1.5 ug) 

i. Plug in RNA concentration value in [sample]. Divide 1500 ng by RNA 

concentration to solve for “x” (volume needed for cDNA synthesis in ul)  

b. From there, calculate the amount of RNAse-free H2O needed to bring the reaction 

total up to 12.5 ul.  

12.5 ul reaction – calculated RNA volume (ul) = x ul RNAse-free H2O 

c. Repeat calculations for each time point within each injection type 

 

 

 

 

 

 

 

 

 

 

 

2. Retrieve RNA from -80ºC freezer  

3. Thaw RNA and cDNA synthesis reagents (Lamda Biotech Corporation, Ballwin, MO, USA) 

on ice 

a. Oligo dT 

b. dNTP 

c. 5x RT Buffer 

d. RNasin 

e. Easy Script RTase 

f. RNAse-free H2O 

4. Mix each solution by vortexing for 10 seconds 

5. Briefly centrifuge to collect residual liquid from the sides of the tubes 

6. Prepare reaction mixture on ice in PCR tubes 

7. Prepare a 9.5 master mix (MM) of solutions (excluding RNA and RNAse-free H2O) 

Component Final 

Concentration 

Volume- 1x 

MM 

9.5x MM 

Oligo dT (10 uM) 0.5 uM 1 ul 9.5 ul 

dNTP (10 mM) 500 uM 1 ul 9.5 ul 

5x RT Buffer 1x 4 ul 38 ul 

RNasin (40 U/ul) 20 U/rxn 0.5 ul 4.75 ul 

Easy Script RTase (200 U/ul) 200 U/rxn 1 ul 9.5 ul 

RNAse-free H2O --- x ul x ul 

RNA  0.5-5 ug/rxn x ul x ul 

Total: 20 ul cDNA mix  
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a. This step has been revised. Adapt master mix needs based off how many samples 

there are. For the total number of cDNA reactions you plan to run, add an extra 

0.5 “reaction.” This ensures there will be enough reagents in the master mix for 

every reaction. This is because there is always a window of error that can occur 

when using pipettes. 

8. Pipette 7.5 ul of 9.5 MM into each PCR tube 

9. Label PCR tubes “3, 1, 4, 2, 6, 5, 7, 8, 9” to dictate which RNA sample corresponds with 

which PCR tube 

10. Pipette RNA and RNAse-free water to the corresponding tubes (match calculated volumes to 

RNA number on PCR tubes) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Batch #1 

RNA # (Injection) Volume (ul) RNAse-free H2O (ul) 

RNA 3 (Non 24) 7.944 ul 4.556 ul 

RNA 1 (Sham 24) 9.671 ul 2.829 ul 

RNA 4 (MO 24) 11.005 ul 1.495 ul 

RNA 2 (Non 36) 5.460 ul 7.04 ul 

RNA 6 (Sham 36) 9.759 ul 2.741 ul 

RNA 5 (MO 36) 9.894 ul 2.606 ul 

RNA 7 (Non 48) 10.30 ul 2.2 ul 

RNA 8 (Sham 48) 4.44 ul 8.06 ul 

RNA 9 (MO 48) 10.28 ul 2.22l 
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Batch #2 

RNA # (Injection) Volume (ul) RNAse-free H2O (ul) 

RNA 3 (Non 24) 9.966 ul 2.534 ul 

RNA 1 (Sham 24) 9.179 ul 3.321 ul 

RNA 4 (MO 24) 13.76 ul 0 ul 

RNA 2 (Non 36) 6.117 ul 6.383 ul 

RNA 6 (Sham 36) 6.35 ul 6.15 ul 

RNA 5 (MO 36) 9.24 ul 3.26 ul 

RNA 7a (Non 48) 5.382 ul 7.118 ul 

RNA 7b (Non 48) 7.29 ul 5.21 ul 

RNA 7c (Non 48) 7.048 ul 5.452 ul 

RNA 7d (Non 48) 5.083 ul 7.417 ul 

RNA 8 (Sham 48) 10.504 ul 1.996 ul 

RNA 9 (MO 48) 7.744 ul 4.756 ul 

Batch #3 

RNA # (Injection) Volume (ul) RNAse-free H2O 

RNA 3 (Non 24) 5.276 ul 7.224 ul 

RNA 1 (Sham 24) 5.555 ul 6.945 ul 

RNA 4 (MO 24) 7.292 ul 5.208 ul 

RNA 2 (Non 36) 5.474 ul 7.026 ul 
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11. Set up the Thermocycler (Eppendorf AG, Hamburg, DEU) 

a. User: Nancy 

i. Hit “enter” when prompted for password 

b. Find folder labelled “Nancy” 

i. Add a new folder 

1. Set up cDNA reaction- labelled “cDNA AC” 

a. 42ºC for 60 minutes 

i. This will be the incubation period 

b. 85ºC for 5 minutes 

i. This will be to stop the reaction 

c. Chill at -20ºC 

i. This is to preserve reactions until it can be stored in 

the -20ºC freezer 

12. Run cDNA synthesis 

a. Find folder labelled “Nancy” 

i. Select “cDNA AC” 

b. Check thermocycler settings 

i. Incubate at 42ºC for 60 minutes 

ii. Heat reaction at 85ºC for 5 minutes 

iii. Chill on ice  

c. Hit “start” 

13. Store until ready for use 

a. Store in freezer at -20ºC until ready to run qPCR 

b. cDNA reactions stored in “Ariana box of primers” 
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Primer Design 

Set #1: We read through the literature and identified possible genes in zebrafish that are affected 

by, or downstream of, either CXCL14 or CXCL12.  

 

 

 

 

 

 

 

 

Primer Design Set #1 
 Gene Description 

Control B-actin 1: Beta-actin 1 reference gene control 

Control 
GAPDH: Glyceraldehyde 3-

phosphate dehydrogenase 
reference gene control 

   

DT of 

CXCL14 

NF-kB 

(Nuclear factor kappa B p105) 
CXCL14 up-regulates activation of NF-κB 

 SCX-a  
(Scleraxis bHLH transcription factor a) 

CXCL14 overexpression in chick embryo 

fibroblasts upregulates connective tissue gene 

expression 

 Pmp-22b 

(Peripheral Myelin Protein 22b) 

CXCL14 modulates expression myelin genes in 

Schwann cells, alters cell proliferation 

 Mpz 

(Myelin Protein Zero) 

CXCL14 modulates expression myelin genes in 

Schwann cells, alters cell proliferation 

 Mbp-a 

(Myelin Basic Protein a) 

CXCL14 modulates expression myelin genes in 

Schwann cells, alters cell proliferation 
   

DT of 

CXCL12 

OSR1 

(Odd-skipped related 1) 

CXCL12 overexpression in chick fibroblasts 

upregulates connective tissue gene expression 

 OSR2 

(Odd-skipped related 2) 

CXCL12 overexpression in chick fibroblasts 

upregulates connective tissue gene expression 

 COL17A1b 

(Collagen Type 17 alpha 1b) 

Expressed in lateral line, neuromasts.  

Knockdown, reduced neuromasts in lateral line 
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Primer Design 

Set #2: Based off inconclusive data from “Primer Design Set #1,” we decided to modify our 

research question. We read through the literature and identified possible genes of interest in 

zebrafish that emerge during lateral line development. 

 

Primer Design Set #2 

 Gene Description 

Control B-actin 1: Beta-actin 1 reference gene control 

Control 
GAPDH: Glyceraldehyde 3-

phosphate dehydrogenase 
reference gene control 

 

Ligands 

CXCL14 

(Chemokine ligand 14 a) 

Predicted to have chemokine activity, involvement in 

cell chemotaxis and involvement with immune 

responses 

CXCL12/SDF1 

(chemokine ligand 12 a; 

stromal cell-derived factor 1) 

Exhibits chemoattractant activity; involved in animal 

organ development, nervous system development, and 

regulation of cell motility 

Receptors 

CXCR4 

(chemokine receptor 4b) 

Exhibits G protein-coupled chemoattractant receptor 

activity; involved in gamete generation, nervous 

system development, and regulation of chemotaxis 

CXCR7B/ackr3b 

(chemokine receptor 7b; 
atypical chemokine receptor 

3b) 

Exhibits chemokine binding activity; involved in 

blood vessel morphogenesis, chemotaxis, and nervous 

system development 

 

Genes 

expressed in 

neuromasts 

and 

primordium 

Snail-1b 

(snail family zinc finger 1b) 

Predicted to have DNA binding activity and 

transcription factor activity; involved in ameboidal-

type cell migration, cardiac muscle progenitor cell 

migration involved in heart field formation, and 

negative regulation of cell-cell adhesion 

Cldn-2 

(Claudin 2) 

Predicted to have structural molecule activity; 

predicted to localize to the bicellular tight junction, 

integral component of membrane, and plasma 

membrane 

Epcam 

(epithelial cell adhesion 

molecule) 

Involved in cell-cell adhesion, epiboly involved in 

gastrulation with mouth forming second, and liver 

development 
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1. Go to the NCBI website (National Center for Biotechnology Information, Rockville Pike, 

MD, USA) → ncbi.nlm.nih.gov 

a. Click on “All databases” and scroll down to “taxonomy” 

i. Type in “zebrafish” in the search box, then hit “search” 

b. You will be taken to: 

Danio rerio  click here 

(zebrafish), species, bony fishes 

Nucleotide Protein 

c. You will be redirected to the “taxonomy browser→ Danio rerio” page 

i.  To the far right is “Entrez records” 

1. Find “gene 100,231” under 

database name 

2. Click on 100,231 

d. You will be redirected to “gene txid 7955 

[organism: no exp]” 

i. This tells us it is a zebrafish 

e. Type in gene txid 7955 [organism: no exp] AND type in gene of interest here. Hit 

search 

i. i.e. gene txid 7955 [organism: no exp] AND mpz (Primer design set #1) 

ii. i.e. gene txid 7955 [organism: no exp] AND CXCL14 (Primer design set #2) 

f. You will be taken to the gene result page 

i. If there is more than 1 result (i.e. Scx-a vs scx-b or CXCL14-a vs CXCL14-b), 

read through the literature… notably the “materials and methods” section to 

see what they picked and why.  

g. Note “gene ID” number  

h. Scroll down to “genomic regions, transcripts, and products” 

i. Hit FASTA 

i. You will be taken to the FASTA sequence 

i. Note NCBI reference sequence 

1. i.e. NC_007113.7 for mpz (Primer design set #1) 

2. i.e. NM_131627 for CXCL14a (Primer design set #2) 

ii. on the top right corner is  

“change region shown” 

1. Click on “selected region” 

2. subtract 500 bp from the “from” value  

and add it to the “to” value.  

3. Hit “update view” 

a. This is so you can be a little  

upstream and downstream  

iii. On the right is “Analyze this sequence” 

Entrez Records 

Database Name Direct Links 

Gene 100,231 

Change region shown 

°Whole sequence 

*Selected region 

From: _____ to: ______ 

           Update view 

Analyze this sequence 

Run BLAST 

Pick Primers 
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1. Click “Pick primers” 

j. You will be redirected to the “NCBI/Primer-BLAST” homepage 

i. Under “PCR template,” is an accession number 

1. Record it  

a. i.e. For mpz: NC_007113.7 (Primer design set #1) 

b. i.e. For CXCL14-a: NM_131627 (Primer design set #2) 

ii. Under “Primer parameters,” change PCR product size “Max” from “1000” to 

“500” 

1. Keep “Min” at “70” 

2. Under “Primer pair specificity checking parameters,” ensure that 

“Database” is “refseq mRNA” and “organism” is “7955” for Zebrafish 

a. Change “Max target size” to “1000” 

3. Hit “get primers” 

k. After lots of waiting… you will be taken to “NCBI/Primer-BLAST: results” 

i. You will be given “Detailed primer reports” 

1. Pick the BEST primer choice.  

2. Criteria: 

a. Length of ~18-24 bases 

b. 40-60% GC content 

c. Start and end with 1-2 G/C pairs 

d. Melting temperature (Tm) of 50-60ºC 

e. Primer pairs should have a Tm within 5ºC of each other 

f. Primer pairs should not have complementary regions  

i. Pick the primers with the least amount of self-

complementary values 

3. Record “forward primer” and “reverse primer” sequences as well as 

“fragment size” 

2. Repeat the process for all genes of interest so there is a primer set designed for each gene  
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Primer Design Set #1: General Information 

  Gene Gene ID Accession # 
Annealing temp for 

PCR amplification 

control B-actin 1 57934 AF057040 60oC 

control GAPDH 406367 AY818346 60oC 
     

DT of 

CXCL14 
NF-kB 110438511 NW_018394395.1 59°C 

  SCX-a 100034489 NC_007130.7 60oC 

  Pmp22-b 678607 NC_007123.7 59°C 

  Mpz 114417 NC_007113.7 60oC 

  Mbp-a 326281 NC_007130.7  59°C 
  

DT of 

CXCL12 
OSR1 450059 NC_007124.7 60oC 

  OSR2 550389 NC_007127.7  

59°C  

  COL17A1b 568794 NC_007124.7 59°C 

Primer Design Set #1: Sequence Information 

 Gene Forward Primer Reverse Primer 
Fragment 

size 

control B-actin 5-TCACCACCACAGCCGAAAG-3 5-AGAGGCAGCGGTTCCCAT-3 98bp 

control GAPDH 5-GTGTAGGCGTGGACTGTGGT-3 5-TGGGAGTCAACCAGGACAAATA-3 121bp 

   

DT  

of 
CXCL14 

NF-kB 5-GCTCCAGGATGACGTTCAGTA-3 5-CCAGAAAGTCCCGTTGAGGT-3 201 bp 

SCX-a 5-TCAGGGAGGGATGAGAGCAG-3 5-TCTGCTCCAGAGAACCGAGA-3 335 bp 

Pmp22-b 5-TGGAAACGAGGAGCAGAACC-3 5-AGTGAACCTGAGAGGAGGGT-3 496 bp 

Mpz 5-ATTGCGTCCTTAGCCCCATC-3 5-GTGTTTGTATCCTCCAGCCTCT-3 177 bp 

Mbp 5-TGTCCGAGTCAAGTTGCTACA-3 5-GCTTTTGGTTGGGCAGTCAG-3 316 bp 

   

DT  

of 
CXCL12 

OSR1 5-CCTCAATCCCACTGTTCCCC-3 5-AGGCAGGTATGAGCAGGAATG-3 484 bp 

OSR2 5-AGTCTTACTGCCCATTCCCG-3 5-AACCGCTCAAACTGTGTGTTTC-3 116 bp 

COL17A1b 5-TCACTTTGTCACTAATGCCGAT-3 5-TCACCCTTTTCTCCCCTTGG-3 327 bp 

https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=1196813934
https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=1196813937
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Primer Design Set #2: General Information 

 Gene Gene ID Accession # 
Annealing temp for 

PCR amplification 

Control B-actin 57934 AF057040 60°C 

Control GAPDH 406367 AY818346 60°C 

 

Ligands 
CXCL14-a 58151 NM_131627 59°C 

CXCL12-a 352944 NM_178307 59°C 

Receptors 
CXCR4-b 114447 NC_007120.7 58°C 

CXCR7-b 561050 NC_007117.7 59°C 

 

Genes 

expressed in 

neuromasts 

and 

primordium 

Snail-1b 792194 NM_130989.3 60°C 

Cldn-2 562525 NC_007132.7 60°C 

Epcam 406454 NC_007124.7 59°C 

Primer Design Set #2: Sequence Information 

 Gene Forward Primer Reverse Primer 
Fragment 

size 

Control B-actin 5’-TCACCACCACAGCCGAAAG-3’ 5-AGAGGCAGCGGTTCCCAT-3 98bp 

Control GAPDH 5’-GTGTAGGCGTGGACTGTGGT-3’ 5’-TGGGAGTCAACCAGGACAAATA-3’ 121 bp 

 

Ligands 
CXCL14-a 5'-TGCAGATGCACAAGAAAAGG-3’ 5'-GGCTTCAAACGTCCTGTGTT-3’ 225 bp 

CXCL12-a 5'-TTCATGCACCGATTTCCAAC-3’ 5'-TGTTGATGGCGTTCTTCAGG-3’ 222 bp 

Receptors 
CXCR4-b 5'-TACGATGTAAGTTGGCTTGTGA-3’ 5'-CTGACTGAGAGGTCGCAAAG-3’ 435 bp 

CXCR7-b 5'-GAGTTGCCACCACACAAAGG-3’ 5'-TGTGCTTAATTGGTCCCTGC-3’ 396 bp 

 

 

Genes 

expressed in 

neuromasts 

and 

primordium 

Cldn-2 5'-GCGTTTTATTGATTTGCAGGCG-3’ 5'-TTGCTGCCCGTTTTATGTGC-3’ 353 bp 

Snail-1b 5'-CGCTGAAGTTTCGAGGGGAT-3’ 5'-CAGTGTTTGCAGTGGAAGGC-3’ 485 bp 

Epcam 5'-CTGCCCCTGTTTTGGAATGG-3’ 5'-GCGTTTGGAAAACGAGACCTT-3’ 375 bp 
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Quantitative Real-Time Polymerase Chain Reaction (qPCR) 

1. Prepare qPCR reactions 

a. Thaw 2x GoTaq qPCR Master Mix (Promega Corporation, Madison, WI, USA), 

primer sets, and cDNA on ice 

i. Gently vortex and centrifuge 2x qPCR master mix 

1. Avoid foaming or extended exposure to light 

b. Prepare reaction master mix (MM) for each primer set 

i. Protocol was adapted to cut reaction mix from 50 ul to 25 ul 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c. Add corresponding cDNA (2.5 ul) to corresponding well in the 96-well plate 

(Applied Biosystems, Foster City, CA, USA) 

i. This is a modification made to the protocol. Previously, we used 8-strip 

qPCR tubes  

d. Pipette 22.5 ul of the 9.5x MM into each corresponding well (based off primers) 

i. Careful to avoid air bubbles  

e. Seal 96-well plate with adhesive cover  

i. Ensure there are no bubbles or wrinkles present 

f. Spin 96-well plate in the plate centrifuge (Benchmark Scientific Inc., Sayreville, 

NJ, USA) 

i. Ensure there are no air bubbles or side droplets 

2. Run qPCR reactions 

a. Bring 96-well plate to the qPCR machine (Applied Biosystems, Foster City, CA, 

USA) 

i. Load 96-well plate inside the qPCR machine 

1. Verify that the loading base is labelled “for 96-well plate use only” 

and not “for 8-strip tubes” 

a. This will cause the door to become unaligned 

Components 9.5x MM 19x MM 

(for duplicates) 
Final concentration 

2x qPCR Master Mix 12.5 ul 237.5 ul 1x 

Forward Primer 0.25 ul 4.75 ul 0.2 uM or 0.05- 0.9 uM 

Reverse Primer 0.25 ul 4.75 ul 0.2 uM or 0.05-0.9 uM 

Nuclease-free H2O 9.5 ul 180.5 ul 
To final volume of 22.5 ul 

*before cDNA is added 

cDNA 

*add directly to well 
2.5 ul 2.5 ul  
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b. Open the software 

i. Login to PC computer by qPCR machine 

1. Username: INSTR-USER 

2. Password: INSTR-USER 

ii. Go to “7500 Software” 

1. Use “Guest” (unless you have an account listed) 

2. Select “continue without connection” 

c. Set up the qPCR reaction 

i. Under “Experiment Properties” 

1. Select “Design Wizard” 

2. Experiment name: NAME IT! (AC date qPCR) 

3. Which instrument: 7500 (96 wells) 

4. Type of experiment: Quantitation  

ii. Under “Methods and Materials” 

1. Quantitation Method: Comparative CT (CT) 

2. Which reagents: SYBR Green Reagents 

3. Which ramp speed: Standard (~2 hours to complete run) 

4. Which template: cDNA (complementary DNA) 

iii. Under “Targets” 

1. How many targets: 1 

2. Reporter: SYBR 

3. Quencher: None 

iv. Under “Samples” 

1. How many samples: answer varies*  

a. If running a qPCR (using both Actin and GAPDH as 

controls) without replicates: 81 

i. Troubleshooting: There should be 96 samples. Any 

left-over wells should be filled with RNAse-free 

H2O and used as blanks 

b. If running a qPCR (using just Actin as a control) without 

replicates: 72 

i. Troubleshooting: There should be 96 samples. Any 

left-over wells should be filled with RNAse-free 

H2O and used as blanks 

c. If running a qPCR with duplicates or triplicate: 96 

i. Left-over wells were filled with RNAse-free H2O 

and used as blanks.  

* Recommendation: only run reactions in duplicates or 

triplicates. Load blanks 

2. How many replicates: 1 



 

 

34 

3. How many negative controls: 0 

4. Arrange plate by: Columns 

5. Set up biological replicate groups: No biological replicates 

6. When prompted, label the samples according to the order in which 

they appear and assign a color 

a. This makes it easier when finding samples for the data 

analysis  

v. Under “relative quantitation settings” 

1. Which sample as reference sample: sample 1 

2. Which target as endogenous control: target 1 

vi. Under “Run Method" 

1. Reaction volume per well: 25 ul 

2. Ensure accurate reaction stage set up 

a. Holding Stage 

i. 95ºC for 10:00 minutes 

b. Cycling stages (40) 

i. 95ºC for 0:15 seconds 

ii. 60ºC for 1:00 minute 

c. Melting Curve Stages 

i. 95ºC for 0:15 seconds 

ii. 60ºC for 1:00 minute 

iii. 95ºC for 0:30 seconds 

iv. 60ºC for 0:15 seconds 

3. See reaction set up then select “Finish designing experiment” 

vii. Start run 

1. Should be completed after 2 hours and 10 minutes.  

viii. Store qPCR reactions in -20 ºC freezer until ready to run gels 

 

qPCR Troubleshooting Guide: 

1. Use plate/tube holders. Do not allow tubes or plates to contact the bench, ice, or other 

surfaces 

a. We switched to 96-well plates since 8-strip tubes advertised as “qPCR tubes” do 

not always correspond with the machine  

i. This happened, causing the qPCR door to be “unaligned” 

2. Do not touch the optical surfaces of plates/tubes (the top or bottom) 

a. Do everything in your power to keep plates dust-, dirt- and fingerprint-free 

b. If you keep the 96-well plate on ice, the condensation forming can have an impact 

on the optical readings. Avoid contact with ice. 

3. Be sure to load every well 

a. This keeps the machine balanced as well as providing room for “blanks” 
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Original qPCR Trial Set-up 

 

 

Trial Set-up for Duplicates: qPCR Part A- Receptors and Ligands 

 

 

Trial Set-up for Duplicates: qPCR Part B- Other Transcription Factors 
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Analyzing qPCR Data 

1. Export data from qPCR machine onto an excel sheet (Microsoft Corporation, Redmond, 

WA, USA) 

2. Categorize CT values by gene  

a. Create different tabs and label them according to gene name 

3. Organize CT values by time point  

i.e. Non-injected 24 hours, Sham-injected 24 hours, and Morpholino-injected 24 

hours 

4. Keep actin control CT values below CT values for genes of interest 

5. Perform Mann-Whitney tests to analyze data 

a. Calculate CT values based off CT values- See Figure 5 

i. Subtract the CT values for gene of interest samples by control samples 

i.e. (CXCL12 CT value for Non-Injected 24 hpf) – (Actin CT Non-

Injected 24 hpf) 

ii. Repeat for each trial, time point and injection per gene of interest 

iii. Remove trials where control values were not characteristic  

i.e. An actin CT value between 25-40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Example for Calculating CT values. Data were arranged by CT values for 

genes of interest and endogenous control (Actin). CT values for experimental samples were 

subtracted from CT values for control samples. Dots denote which numbers are being 

subtracted from each other to calculate CT values. Repeat this process for all injection 

incubation periods (non-injections-green, sham injection-red, morpholino injected- blue), 

trials and genes of interest. Remove any trials where the control CT values are 

uncharacteristically high (between 25-40). 
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b. Open data analysis software 

i. In this case, GraphPad Prism (GraphPad Software, San Diego, CA, USA) 

c. Find “New table and graph” 

i. Under “XY,” select “grouped” 

1. Grouped tables have two grouping variables, one defined by 

columns and the other defined by rows 

2. Under “Data table,” select “enter data into a new table” 

3. Under “options,” select “enter and plot a single Y value for each 

point.” 

4. Click on “create” 

d. Add calculated CT values for each gene of interest trial to the data sheet 

i. On the top of the sheet are groups 

1. Assign labels based on injection type and incubation period 

i.e. Group A: Non-Injected 24 hpf, Group B: Sham Injected 24 hpf, 

Group C: Morpholino Injected 24 hpf 

a. Repeat for each time point  

ii. Once data is organized, click “Analyze” 

e. Log transform data 

i. Under “Transform, normalize…” select “transform” 

ii. Under “Parameters,” select “Transform Y values using…” 

1. In the drop-down box, find and select “Y= Log2(Y) 

a. Click “ok” 

f. Once data is transformed, click “Analyze” 

g. Setting up analysis parameters 

i. Under “Column analyses,” select “t tests (and nonparametric tests)” 

1. Select two groups at a time (compare injected to non-injected) 

ii. Under “Experimental Design,” select “unpaired” 

1. Under “assume gaussian distribution?” select “No. Use 

nonparametric test.” 

iii. Under “Choose test,” select “Mann-Whitney test. Compare ranks” 

iv. Hit “ok” to run Mann-Whitney test 

h. Record p-values  

i. Repeat process for all genes of interest 

1. Compare non-injected to sham injected 

a. Repeat for each time point 

2. Compare non-injected to morpholino injected 

a. Repeat for each time point 

3. Compare sham injected to morpholino injected 

a. Repeat for each time point 

6. For graphing data 

a. Average CT values for each injection incubation period and for each gene of 

interest- See Figure 5 
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b. Calculate the standard deviation range for each data set  

i. Begin by calculating the standard deviation (st. dev) of the data set 

ii. To find the lowest acceptable value, subtract the calculated standard 

deviation from the average 

iii. To find the highest acceptable value, add the calculated standard deviation 

to the average 

*This analysis can also be completed with 2-standard deviations 

c. Remove any outliers  

i. Orange cells denote data points that fall outside the standard deviation 

ii. Yellow cells denote data points within decimal points of the accepted 

standard deviation range 

d. Re-average data that fall within the acceptable standard deviation range 

 

 

Figure 6: Example for Averaging CT values by trial. Data were organized by gene of interest, 

sample type, and trials. All trials were averaged, and standard deviations were calculated. 

Standard deviations were added to and subtracted from averages to find standard deviation range. 

Any outliers falling outside of the acceptable standard deviation range were excluded and data 

were re-averaged. Orange cells denote data points falling outside the acceptable standard 

deviation range. Yellow cells denote data points within a few decimal points from the accepted 

standard deviation range.  

 

 

e. Calculate CT values based off accepted CT values- Figure 7 

i. Subtract the CT values for gene of interest samples from the CT values for 

actin control samples 

   i.e. (CXCL12 CT value for Non-Injected 24 hpf) – (Actin CT Non-Injected 24 hpf) 

ii. Repeat for each injection incubation period per gene of interest 

iii. Also repeat this step for every trial 
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Figure 7: Example for calculating CT values. Data were organized by average CT values 

for genes of interest and the endogenous control (-actin). Averaged CT values for 

experimental samples were subtracted from averaged control CT values. Dots denote which 

numbers are being subtracted from each other to calculate CT values. Repeat this process for 

all injection incubation periods (non-injected- green, sham injected- red, morpholino injected- 

blue) and genes of interest.  

 

f. Calculate CT values- Figure 8 

i. Comparing sham injected embryos to non-injected embryos 

1. To find CT values for sham injected embryos, subtract the CT 

values of sham injected samples from the CT values for non-

injected samples 

i.e. (CXCL12 CT value for sham injected 24 hpf) – (CXCL12 

CT value for sham injected 24 hpf) 

2. Repeat this process for each time point and for every gene of 

interest 

ii. Comparing morpholino injected embryos to non-injected embryos 

1. To find CT values for morpholino injected embryos, subtract the 

CT values of morpholino injected samples from the CT values 

for non-injected samples 

i.e. (CXCL12 CT value for morpholino injected 24 hpf) – (CXCL12 

CT value for non-injected 24 hpf) 

2. Repeat this process for each time point and for every gene of 

interest 



 

 

40 

iii. Comparing morpholino injected embryos to sham injected embryos 

1. To find CT values for morpholino injected embryos, subtract the 

CT values of morpholino injected samples from the CT values 

for sham injected samples 

i.e. (CXCL12 CT value for morpholino injected 24 hpf) – 

(CXCL12 CT value for sham injected 24 hpf) 

2. Repeat this process for each time point and for every gene of 

interest 

 

 

Figure 8: Example for Calculating CT values. To calculate the CT values between non-

injected and injected samples, non-injected CT values were subtracted from either sham 

injected (red) CT values or morpholino injected (blue) CT values. To calculate the CT 

values between injections (purple), sham injected CT values were subtracted from morpholino 

injected CT values. Highlighted cells denote calculated CT values. Repeat this process for all 

genes of interest.  

 

g. Calculate Relative quantification (RQ)- see Figure 10 

i. Follow the equation: 2(-C
T
) 

ii. This will give you folding values for each of your samples 
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Figure 9: Example for Calculating RQ values. To compare injected samples (sham 

injected- red and morpholino injected- blue) to non-injected samples (green), folding values 

were calculated using CT values labelled “injected vs non-injected” and used in the 

formula: 2-C
T.  To compare sham injected samples (red) to morpholino injected samples 

(blue), folding values were calculated using the CT values labelled “between injections” 

and used in the formula: 2-C
T.  Repeat this process for all genes of interest. 

 

h. Graph folding values using Excel 

i. Go to “Insert” and select “Insert Column or Bar graph” 

1. When prompted, select 2-D Clustered Column 

ii. Go to “Chart Tools” and select “Design” 

1. Under “Design,” click on “Select Data” 

iii. Go to “Legend Entries Series” and select “Add” 

1. When prompted, label “Series Name” as Insert Gene of Interest 

Name Here Folding Values 

i.e. Series Name: CXCL12 Folding Values 

iv. For “Series values,” highlight the calculated folding values 

1. Select “ok” 

v. Go to “Horizontal (Category) Axis Labels” and select “Edit” 

1. For “Axis Label Range,” select “Injections by Time Point” labels  

2. Select “ok” 
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vi. Go to “Chart Tools” and select “Design” 

1. Under “Design,” click on “Add Chart Element” 

a. Find “Axes” and select “More Axis Options” 

i. Under “Format Axis,” click “Axis Options” 

1. Select “Vertical (Value) Axis” 

2. Click this button  

a. Click on “Axis Options” 

i. Select “Logarithmic scale”  

ii. Edit Base number to “2” 

b. Find “Axis Titles” and select both “Horizontal” and 

“Vertical” axis 

i. Label the horizontal axis “Injection and Incubation 

Period” 

ii. Label the vertical axis “Relative Gene Expression” 

vii. Repeat this process for: 

1. All genes of interest→ Non-injected, sham injected, and 

morpholino injected at 24 hpf 

2. All genes of interest → Non-injected, sham injected, and 

morpholino injected at 36 hpf 

3. All genes of interest → Non-injected, sham injected, and 

morpholino injected at 48 hpf 

4. All genes of interest → sham injected and morpholino injected at 

24 hpf 

5. All genes of interest → sham injected and morpholino injected at 

36 hpf 

6. All genes of interest → sham injected and morpholino injected at 

48 hpf 

i. Graphing folding values using GraphPad PRISM  

i. Open GraphPad Prism (GraphPad Software, San Diego, CA, USA) 

ii. Find “New table and graph” 

1. Under “XY,” select “grouped” 

a. Grouped tables have two grouping variables, one defined 

by columns and the other defined by rows 

b. Under “Data table,” select “enter data into a new table” 

c. Under “options,” select “enter and plot a single Y value for 

each point” 

iii. Add calculated folding values from Excel sheet 

1. On the left side of the GraphPad data sheet are numbers 

a. Assign labels based on time points- hours post-fertilization 

(hpf) 

i.e. 1: 24 hpf, 2: 36 hpf, 3: 48 hpf 

iv. On the top of the sheet are groups 



 

 

43 

1. Assign labels based on injection type 

i.e. Group A: Non-Injected, Group B: Sham Injected, Group C: 

Morpholino Injected 

2. Organized data according to the labels 

v. Go to the Navigator Panel under “Graphs” 

1. Select “New Graph” 

a. Under “Table,” select the Data sheet you want to graph 

b. Under “Kind of Graph,” select “Grouped” 

c. Find “Summary data” and select  

vi. To edit graph 

1. Find “Change” and select  

a. Under “Left Y axis,” change scale to “Log 2” 

i. Click on “ok” 

2. Label the X-axis and Y-axis 

3. Title graph 

vii. To add error bars and averages 

1. Select the data table 

2. Find “Table format: grouped” and select “enter and plot error 

values calculated elsewhere” 

a. In the dropdown box, select “Mean, SD, N” 

i. Add values to the data table 
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How to Make, Run, and Visualize Gels 

1. Prepare 1x TAE solution 

a. If there isn’t any made, pour 100 mL of 10X TAE and 900 mL dI H2O into a 1L 

flask 

2. Prepare 1% agarose 

a. Mass 0.40 g of agarose (mass on tared weigh paper) 

b. Transfer agarose to 125 mL Erlenmeyer flask  

c. Add 40 mL of 1x TAE to flask with agarose and mix  

d. Microwave for 30 seconds or until solution bubbles 

e. Stir solution   

f. Microwave solution two more times for another 10 seconds  

g. Stir solution and allow flask to cool  

3. Prepare gel tray 

a. Add 12-well gel comb to designated area in gel tray 

b. Lift sides of gel tray and screw tightly 

c. Once it is warm to the touch, pour 1% agarose into gel tray 

d. Allow gel to set for roughly 15 minutes 

4. Prepare gel electrophoresis box (Fotodyne Inc., Hartland, WI, USA) 

a. Once 1% agarose gel is set, remove gel comb, unscrew the sides of the gel tray, 

push sides down and screw tightly  

b. Place gel tray in electrophoresis box 

i. Make sure wells are near the black lead end of the gel box 

c. Add 1x TAE to gel box, allowing it to cover the gel 

5. Load samples 

a. When running an RNA gel, load 15 ul of RNA with 2 ul loading dye 

b. When running qPCR gels, load 15 ul of qPCR sample with 2 ul loading dye 

c. Always load at least one lane with 8 ul of DNA marker with 2 ul loading dye 

d. Load samples one at a time through the buffer 

i. Be sure not to puncture the gel with pipette tips 

            * Run one gene of interest (9 samples and marker) per gel 

6. Run gel 

a. Connect leads (black with black, red with red) 

i. Make sure the gel is running towards the red lead 

b. Set power supply to ~100 Volts constant current for roughly 30-45 minutes  

i. Make sure dye fronts have travelled 2/3rds down the gel 

7. Visualize gel 

a. Turn on camera and computer 

i. Log in- Username: calderoa        Password: BcLU2019 

b. Place gel on the UV transilluminator (Fotodyne Inc., Hartland, WI, USA) 

c. Place hood over transilluminator and turn on UV light 
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d. Zoom in on gel 

e. Flip switch to “O” position 

f. Take picture and turn off UV light 

g. Flip switch to “I” position 

h. Camera program should open on the computer 

i. Import picture 

j. Print it with the Mitsubishi printer (Mitsubishi Electric, Tokyo, JP) 

i. Make sure pixel size is 1280 x 1024 

ii. Name file: Nancy AC, date, gel type 

k. Log out and turn camera off 

l. Discard gel in appropriate gel container 

i. Fresh 1% agarose gel container 
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Appendix V. Inconclusive data from primer set #1 

 

Figure 10. Effect of Sham and Morpholino injections on Gene Expression in Danio rerio 

embryos at 24 and 36 hpf. RT-qPCR examined the mRNA levels of eight zebrafish genes: NF-

kB, SCX, Pmp22b, mpz, mbp, OSR1, OSR2, and COL17 expressed at 24 and 36 hours post-

fertilization (hpf) following microinjection with either 1 nl of phenol red (sham) or CXCL14 

antisense morpholino in phenol red. Relative gene expression levels were determined using the 2-

Ct method with β-actin as the reference gene. The statistical significance of the data could not 

be determined given low sample size and inconclusive results. 

 

 

 


	Lawrence University
	Lux
	5-29-2019

	Examining lateral line development through CXCL14 modulation of CXCL12-CXCR4 mediated gene expression in Danio rerio
	Ariana Calderon-Zavala
	Recommended Citation


	OLE_LINK1

