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Abstract 

C. elegans has been used as a model system for studies of nervous system development and 

function for over 50 years due to its relative simplicity and strong similarity to other animals. 

One of such similarities is the presence of an RFX transcription factor, which is responsible for 

controlling gene expression in a handful of important organs, including the brain. RFX proteins 

are a family of highly evolutionarily conserved proteins that usually function by binding to a 

specific region (called the X-box) in the promoter of their target genes. A single RFX-coding 

gene has been found in C. elegans, called daf-19. The function of DAF-19 proteins thus far 

identified include regulating innate immunity and ciliogenesis. The daf-19 gene encodes four 

related proteins, or isoforms: DAF-19A, B, C, and M. In this study, we fully characterize the 

expression pattern of the DAF-19C isoform through the use of fluorescently labeled protein 

constructs, confocal fluorescence microscopy, and neuron maps. We report that DAF-19C is 

expressed in at least 48 ciliated neurons and eight non-ciliated neurons in the head. 
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INTRODUCTION  

Caenorhabditis elegans 

Caenorhabditis elegans is a nematode (round worm) that has been used as a model organism 

for almost 50 years. In the 1960s, Sydney Brenner, foreseeing a near end of “classical problems” 

of molecular biology, proposed a shift of biological research into developmental and neuronal 

biology (Brenner, 1963 & 1988). He initially proposed Caenorhabditis briggsae as a new, 

simpler model organism, because of its  

short life cycle, [easy cultivation], and [ability] to be handled in large numbers, like a 
micro-organism. It [has] relatively few cells, so that exhaustive studies of lineage and 
patterns can be made, and [is] amenable to genetic analysis.” (Brenner 1963) 
 

C. elegans was preferred over C. briggsae later for the former’s higher survival rate in lab 

conditions and its ease of sectioning for electron microscopy. The worm has since been one of 

the standard model organisms by over 1,200 labs around the world today (Corsi et al., 2015; 

WormBase, 2018). 

C. elegans populations consist mostly of self-fertilizing hermaphrodites. Males, having only 

a single X chromosome, occur in nature with a frequency of less than 0.2% (Corsi et al., 2015). 

Specific mutations, such as those in the gene him-5, can affect disjunction in meiosis and can 

thus increase the occurrence of males to 18% to 37% (Meneely et al., 2012). Heatshock may also 

cause nondisjunction (separation of homologous chromosomes during meiosis) and produce 

males, though at a lower rate. See Box 1 for an explanation of gene and protein naming 

conventions used throughout this text. 

An average C. elegans worm has a life cycle of around 55 hours at 22⁰C with an abundant 

food source (Figure 1), after which time the young adult hermaphrodite gains the ability to 

produce eggs. Sperm of hermaphrodites are produced first and stored in the spermatheca during 
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the L4, or fourth larval stage, and are used for self-fertilization later. But, if mated with a male, 

sperm of males will be used preferentially (Ward & Carrel, 1979). This evolutionary trait allows 

for the creation of new lab strains via 

mating. 

When under environmental 

stress, such as starvation or crowding, 

C. elegans will enter a non-

reproductive dauer stage after the L1 

larval molt. Dauers are thinner and 

longer than L2 and L3 larvae. As the 

main dispersal form in nature, they 

are extremely motile in response to 

mechanical stimulation, though 

immobile most of the time, and may 

stand on their tail and wave their 

body in the air (“nictating behavior”, 

Lee et al., 2011; Reviewed by Corsi et al., 2015). Dauer animals have mouth plugs as part of 

their cuticle, providing stronger resistance against unfavorable substances and conditions in the 

environment (reviewed by Corsi et al., 2015). The metabolism of dauer animals is also reduced 

for survival in the absence of food (Riddle & Albert, 1997). Amphid neurons, especially AWC 

and AFD, responsible for chemotaxis and thermotaxis, respectively, are required for dauer 

formation (Bargmann & Mori, 1997; Riddle & Albert, 1997).  

Box 1 Genetic Nomenclature in C. elegans 

daf-19 Names of gene that encodes 

DAF-19 proteins 

 

DAF-19, DAF-19C Names of the functional 

protein products of the gene 

with the same name. “C” 

indicates a particular isoform. 

 

daf-19c::gfp Insertion of gfp (Green 

Fluorescent Protein) gene into 

the daf-19c gene 

 

ofEX[daf-19c] daf-19c is on an 

extrachromosomal (EX) 

transgene array; of designates 

the lab of production 

 

daf-19(m86)II An allele of daf-19 that is 

named m86, and is on the 

second chromosome (II) 
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In laboratory, the layer of the mouth plug makes dauer worms unable to dye-fill. Dye-filling, 

which is the process of allowing the worms take up a lipophilic dye through ciliated dendrites 

that are usually exposed to the environment, is a method for detecting ciliary function and for 

neuron identification (Figure 9A; Hedgecock et al., 1985). Dauer larvae are also undesirable for 

strain maintenance due to possible epigenetic changes induced by starvation that can persist over 

two generations (Rechavi et al., 2014). Transferring dauer animals to a fresh nematode growth 

medium (NGM) plate usually induces development to the fourth larval stage (L4). For strains 

genetically modified to be dauer-constitutive, such as strains with daf-19 mutations, less than a 

third of the animals can escape dauer arrest in a 15⁰C environment (Swoboda et al., 2000). 

One major advantage of C. elegans as a model organism is its transparency; life stages and 

Figure 1 C. elegans life cycle at 22⁰C. 0 min is fertilization. Numbers in blue along the arrows 
indicate the length of time the animal spends at a certain stage. First cleavage occurs at about 40 
minutes post-fertilization. The length of the animal at each stage is marked next to the stage name 
in micrometers (μm). Original figure and figure legend from Wormatlas.org, Altan and Hall, 2005. 
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organs of live animals can be easily discerned under a dissection microscope (Corsi et al., 2015). 

Further, expression of transgenic markers can also be observed in live animals under fluorescent 

microscopes. 

Corsi et al. (2015) summarized the medical significance of C. elegans research in their 

review: 

At least 38% of the C. elegans protein-coding genes have predicted orthologs in the 
human genome (Shaye & Greenwald, 2011), 60–80% of human genes have an 
orthologue in the C. elegans genome (Kaletta & Hengartner, 2006), and 40% of genes 
known to be associated with human diseases have clear orthologs in the C. elegans 
genome (Culetto & Sattelle, 2000). Thus, many discoveries in C. elegans have 
relevance to the study of human health and disease. 

 

Regulatory Factor X Proteins 

Regulatory Factor X-box binding proteins (RFX) are a family of winged-helix DNA-binding 

proteins that are highly conserved in eukaryotes; they consist of a DNA binding domain (DBD) 

and multiple conserved dimerization and extended dimerization domains (Emery et al., 1996a; 

Gajiwala et al., 2000; Aftab et al., 2008). As transcription factors, RFX proteins bind exclusively 

to a region within the promotor of their target genes. The region, termed the X-box (hence the 

name for the RFX proteins), is highly conserved among the eukaryotes (reviewed by Chu et al., 

2012). X-box DNA sequence motifs have been used to find novel RFX factor-regulated genes. 

RFX-1, RFX-2, and RFX-3 were first identified in human and mouse genomes (Reith et al., 

1990 & 1994). Later, RFX-4 and RFX-5 surfaced, both in human and mouse, followed by SAK-

1 in Schizosaccharomyces pombe, ScRFX in Saccharomyces cerevisiae (the later CRT-1), and 

CeRFX in C. elegans (now called DAF-19) (reviewed by Emery et al., 1996a). More recently 

discovered members of the family are RFX-6 and RFX-7 in humans (Aftab et al., 2008). 

The RFX proteins, along with orthologs identified in many other eukaryotes, all share a 
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highly conserved DBD structure that is made up of three α-helices (H), β-strands (S), and 

connecting loops (L), with pairwise identities between 36% and 90% (Gajiwala et al., 2000; 

Figure 2A). Two strands and a loop form the wing-helix DBD that is shorter than that of other 

known DNA-binding proteins (Gajiwala et al., 2000). When interacting with an X-box region in 

the promoter, two RFX proteins dimerize by aligning in an inverse-parallel fashion, and flank the 

two sides of the X-box. The wing on the protein interacts with the major groove of the adjacent 

X-box half-site. A side chain of one of the helices (H3) on the RFX protein then interact with the 

minor grooves of the other X-box half-site (Gajiwala et al., 2000; Figure 2B). Fascinatingly, the 

homodimer complex has no direct protein-protein interactions, but the proteins cooperate 

through their interaction with DNA by hydrogen-bonding (Gajiwala et al., 2000). 

Along with the DBD, other regions of RFX-1 are also found to be orthologous to sequences 

of other RFX proteins (Emery et al., 1996a; Figure 3). These regions include extended 

dimerization domains (EDD) that aid in dimerization and the main dimerization domain 

(reviewed by Aftab et al., 2008; Figure 3). EDD mediates the formation of alternative 

dimerization complexes from conserved regions (Katan-Khaykovich et al., 1999). RFX-5, 

Figure 2 A. Amino acid sequence alignment of the DBDs of five human RFX proteins. Conserved amino acids are 
highlighted in purple. Hash signs denote hydrophobic core-comprising residues. Asterisks indicate side-chains buried within 
DNA grooves during binding. B. Stereo diagram of hRFX-1-DNA 2:1 complex. A and B indicate the two X-box half-sites. 
W1 denotes the wing-helix. Figures adapted from Gajiwala et al., 2000. 
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however, does not have any dimerization domains. There are also regions of the RFX proteins 

that are rich in proline, glutamine, or acidic amino acids that are characteristic of transcription 

factors (Figure 3). RFX-4 and RFX-6 also have the conserved regions, in addition to the DBD, 

however, RFX-7, like RFX-5, lacks the dimerization domain (Figure 4). It is thought that the 

more closely related RFX-5 and RFX-7 play a different role in transcription than the other 

proteins and their orthologs. Indeed, from phylogenetic analysis based on the DBDs using CRT-1 

from S. cerevisiae as an out-group, RFX-5 and RFX-7 and their orthologs are found to occupy 

the same subgroup in the RFX family, while the other subgroups contain RFX-1, -2, -3, and 

Figure 3 Alignment of RFX orthologs. Sequences are aligned by DNA-binding domains (DBD) in red. Yellow 
regions are rich in proline (P), glutamine (Q), or acidic amino acids (DE). Light blue indicates conserved regions A, 
B, and C. Green indicates the dimerization domain (D). Protein lengths are indicated after the sequence. ScRFX 
size is predicted from an open reading frame present. Image remastered from Emery et al., 1996a. 

Figure 4 Alignment of functional motifs from known human RFX genes. Sequences are aligned by DBD, and 
the functional domains AD, DBD, B, C, and D are color-coded green, red, purple, blue, and yellow, as labeled. 
Domain length and positions are proportional to actual lengths. Figure and legend adapted from Aftab et al., 2008. 
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RFX-4 and -6. Aftab et al. (2008) speculated that the RFX-4/6 and RFX-5/7 subgroups are 

results of two gene duplication events prior to differentiation of the RFX-1 subgroup (Figure 5). 

daf-19, the only C. elegans RFX transcription factor gene, shares a common ancestor with the 

RFX-1/2/3 subgroup, but seems to have differentiated before RFX-1, -2, and -3.  

The X-box motif is the general DNA sequence to which RFX proteins bind. The X-box 

region recognized by RFX proteins is identified as a 12 to 15-bp long nucleotide sequence of 5’-

GTNRCC/n/RGYAACNN-3’, in which “/n/” denotes a spacer of zero to three random 

nucleotides (Emery, 1996b; see Box 2 for nucleotide codes). The X-box sequence was further 

refined to a sequence of 5’-GTHNYY/AT/RRNAAC-3’ and averaged to 5’-RTHNYY/WT/ 

RRNRAC-3’ specifically for C. elegans. This sequence has been used in several bioinformatics 

studies to identify new target genes of RFX transcription factors (RFX TF) (Swoboda et al., 

2000; Efimenko, 2005; Senti & Swoboda, 2008; 

Chu et al., 2012; Xie et al., 2013; Tammimies et 

al., 2016). At least in C. elegans, the X-box 

regions cluster most frequently between 60 bp 

and 130 bp upstream of the translation start site 

(Burghoorn et al., 2012).  

Despite the conservation of X-box nucleotide sequences, different RFX proteins bind to 

different specific X-box sequences (Emery et al., 1996a). Because of this specificity, multiple X-

box regions may be present in a promoter, and cooperatively recruit RFX TFs to regulate the 

target gene expression. Both S. cerevisiae and C. elegans contain examples of motif pairs, in 

which a “strong” motif (referring to the motif driving stronger gene expression) and a less 

conserved, “weak” motif exist within the same promoter. The “weak” motif may attract and  

Box 2 Nucleotide Codes. Bioinformatics. (n.d.). 
IUPAC Codes. Retrieved from 
https://www.bioinformatics.org/sms/iupac.html 
IUPAC nucleotide code Base 
A Adenine 
C Cytosine 
G Guanine 
T Thymine 
R A or G 
W A or T 
Y C or T 
H A or C or T 
N any base 
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Figure 5 Phylogenetic analysis of mammalian RFX transcription factors based on DBDs. RFX proteins of six 
mammalian species and C. elegans are compared using CRT-1 as the out-group. Bootstrapped 100 times with 
numbers at each internal node as bootstrap value. Different colors indicate different orthologue groups. Arrow 
indicates DAF-19 from C. elegans. Six mammalian species: Mus–mouse (Mus musculus); Rno–Rat (Rattus 
norvegicus); Cfa–dog (Canis familiaris); Ptr–chimpanzee (Pan troglodytes); Mmu–monkey (Macaca mulatta) and 
Hsa–human (Homo sapiens). Figure adapted from Aftab et al., 2008. 
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therefore limit the “strong” motif’s access to RFX proteins, yielding an additive effect of 

enhancement or suppression, with the two X-box motifs working synergistically or 

antagonistically, respectively (Chu et al., 2012). 

There are exceptions to X-box binding. As elaborated below, target genes regulated by 

certain isoforms of daf-19, i.e., daf-19a/b and daf-19m, do not contain X-box motifs in their 

promoters (Senti & Swoboda, 2008; Wang et al., 2010). 

Once bound to X-box sequence, some members of the mammalian RFX family can regulate 

processes related to the immune system. RFX-1 was first found to be important for the 

expression of major histocompatibility complex (MHC) class II genes (Reith et al., 1988), and 

later found to activate hepatitis B enhancer I (Reith et al., 1994). More recent studies also 

suggest its essential role in the initial development stages (Feng et al., 2009; reviewed by Choksi 

et al., 2014). RFX-5 is the most prominent immune system-related protein, forming a complex 

with a suite of transcription factors, such as RFXANK and CIITA to activate important MHC 

class II genes (Steimle et al., 1995; Kern et al., 1995). Lack of RFX-5 expression may lead to 

bare lymphocyte syndrome, which disables the body’s immune system severely. DAF-19, the 

sole orthologue in the nematode C. elegans, cooperates with ATF-7 to trigger innate microbial 

immune response, not unlike RFX proteins in humans (Xie et al., 2013). 

The other function of the RFX family, the focus of this study, is its regulation of cilia-related 

genes, specifically those involved in ciliogenesis. Cilia are ancient and complex organelles that 

serve sensory, motility, and developmental functions. They are hair-like organelles, protruding 

out of cells or the end of dendrites, and are present in nearly all unikont organisms. RFX proteins 

are present only in Unikonts, and appear to have been derived after ciliary genes evolved 

(Piasecki et al., 2010). RFX TF-mediated ciliogenesis is found only in animals, suggesting the 
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function of RFX TF is derived early in the animal lineage (Piasecki et al., 2010). 

There is redundancy in RFX functions related to ciliogenesis. For example, RFX-1 and its 

orthologs are expressed primarily in the brain (specifically cerebral cortex and Purkinje cells), in 

addition to “white blood cells, heart, eye, testis, and cancerous cells” (Aftab et al., 2008; Choksi 

et al., 2014). Though it is less involved in cilia-related gene regulations than other members of its 

subgroup, RFX-1 regulates the expression of ALMS-1, a gene that encodes a protein in the basal 

body of the cilia, either by itself as a homodimer or in concert with RFX-2 as a heterodimer 

(Purvis et al., 2010; reviewed by Choksi et al., 2014). 

RFX-2 is expressed preferentially in the brain, but is also massively expressed in the testis 

(Aftab et al., 2008; Choksi et al., 2014). It is responsible for motile cilia in cells such as the 

epidermis of Xenopus larvae and multiciliated cells in mammalian airways (reviewed by Choksi 

et al., 2014), and is a key regulator of cilia/flagella-specific genes in mice. RFX-2 mutants 

experience early apoptosis of germ cells, leading to spermatogenesis dysfunction (Kistler et al., 

2015; Wu et al., 2016). RFX-2 is also responsible for ciliogenesis in the Kupffer’s vesicle in 

zebrafish embryos, which is essential for left-right asymmetry of the body plan (Bisgrove et al., 

2012). 

Similarly, RFX-3 is expressed in the embryonic node, and is essential for left-right 

asymmetry (Bonnafe et al., 2004), though it is expressed earlier than RFX-2 (Bisgrove, et al. 

2012). RFX-3 is also present in differentiating multiciliated cells of Xenopus (frogs), one of 

many expression patterns the gene shares with RFX-2. Lack of RFX-3 may lead to shortened or 

fewer cilia in the node and pancreas, or inversely overproduced cilia in the node or the 

subcommissural organ (SCO) (reviewed by Choksi et al., 2014). Furthermore, RFX-1, RFX-2, 

and RFX-3 interact with each other to upregulate or downregulate DYX1C1 and DCDC2 
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expression in the brain, maintaining cilia development, which otherwise would lead to 

developmental dyslexia (Tammimies et al., 2016). 

RFX-4 is expressed in the testis and the brain (reviewed by Choksi et al., 2014), and most of 

its mutant phenotypes are identified in mice. For example, heterozygous RFX-4 mutant mice 

exhibit severe hydrocephalus and lack of the SCO. Homozygous RFX-4 mutants die shortly after 

birth, with an under-developed brain and ventricle (reviewed by Choksi et al., 2014). These 

phenotypes are thought to be a result of loss of cilia integrity caused by the mutation. 

Interestingly, RFX-4 and RFX-6 do not have a glutamate-rich activation domain, and are 

thought to function by dimerizing with other RFX proteins (Aftab et al., 2008). RFX-5 has not 

yet been found to have ciliary-related functions. The other member of its subgroup, RFX-7, is 

hypothesized to function by interacting with other non-RFX transcription factors (Aftab et al., 

2008). 

 

DAF-19 and Ciliogenesis 

Even though multiple orthologs of RFX TF genes have been discovered in mammals, only 

one such gene is found in C. elegans (Swoboda et al., 2000), called CeRFX (Emery et al., 

1996a), or, daf-19. daf-19 was first found to regulate ciliogenesis in sensory neurons (Swoboda 

et al., 2000), and later found also to regulate the nematode’s innate immunity similar to RFX-1 

(Xie et al., 2013). It is also the first known regulator of synaptic maintenance (Senti & Swoboda, 

2008). The effect on synaptic maintenance appears to be due to the action of the longer DAF-

19A isoform (Senti & Swoboda, 2008). daf-19 null alleles have defective roaming and dwelling 

behavior, that is rescued by transgene expression of DAF-19A alone (Senti & Swoboda, 2008); 

similarly, a mutation that deletes exon two of daf-19 specific to the DAF-19A isoform, confers 
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the same dwelling and roaming defects as well as resistance to levamisole, an anti-parasitic drug 

(De Stasio et al., 2018). In contrast, the DAF-19C isoform regulates ciliogenesis in sensory 

neurons through direct X-box control (Gajiwala et al., 2000; Senti & Swoboda, 2008; Burghoorn 

et al., 2012). The smallest isoform, DAF-19M is expressed only in males where it controls 

specification of cilia in male-specific neurons such as HOA and HOB tail neurons (Wang et al., 

2010). 

The protein sequence of DAF-19 is most closely related to the RFX-1/2/3 subgroup (Figure 

5). It contains the extended dimerization domain in addition to a conserved DNA binding 

domain. However, like the RFX-4/6 proteins, it lacks an activation domain that would interact 

with a portion of the RNA polymerase complex or basal transcription factors (Swoboda et al., 

2000; Figure 6). It is also curious that C. elegans has only one copy of an RFX TF gene, since 

the subgroups diversified before the separation of nematodes and mammals (Aftab et al., 2008; 

Figure 5). If the phylogenetic analysis is correct, C. elegans should have orthologs of the other 

two subgroup as well. Aftab et al. (2008) speculate that the other orthologs were either lost to 

Figure 6 A. DNA structure of DAF-19. Numbered boxes depict exons, lines depict untranslated regions, and the dotted 
box depicts the untranslated region at the 3’ end. DAF-19 is SL1 trans-spliced at the 5’ end. The m86 allele is a C to T 
point mutation, and results in an early stop codon. DBD: DNA Binding Domain; DIM: dimerization domain; AAAAAA: 
poly-A tail at the 3’ end. B. Amino acid sequence of DAF-19C, compared with that of human RFX-1. Aligned at DBD. 
Each amino acid sequence as labeled. Dotted line aligns the protein with the gene sequence. The designation of the lettered 
domains remain consistent with previous figures. Figure adapted from Swoboda et al., 2000. 
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evolution, or never derived as a response to more complicated mammalian functions. 

The daf-19 gene has a total of twelve exons (Figure 6A) and three identified promoter 

regions. The longer isoforms can be alternatively spliced to generate a total of four different 

DAF-19 isoforms (Figure 7), each with its own functions. In the order of length, the four 

isoforms are daf-19b, daf-19a, daf-19c, and daf-19m (Senti & Swoboda, 2008; Wang et al., 2010; 

Figure 7). All four isoforms share the same DBDs and dimerization domains. 

daf-19a and b are the two longer isoforms made from the daf-19 gene. They are similar in 

exon composition except that daf-19a lacks exon 4 (Figure 7). daf-19a/b are thought to be 

expressed in around 240 non-ciliated head neurons, and have no cilia-related functions (Senti & 

Swoboda, 2008). Senti and Swoboda (2008) also found that daf-19a is necessary for synaptic 

transmission, and indirectly regulates expression of unc-64, ida-1, unc-17, snb-1, and snt-1 at the 

protein level (mRNA levels of these genes were found to be stable). daf-19a mutants have 

reduced expression of synaptic vesicle components and other synaptic components, leading to 

reduction of synaptic function that worsens with age. The mechanism for this regulation remains 

unknown, since the aforementioned genes do not contain X-boxes in their promoters. It is also 

not known whether daf-19a and daf-19b work in concert or separately, or whether daf-19b has a 

specific function of its own at all. 

daf-19c is a shorter isoform. Its protein begins at either exon 4 or 5 as both begin with a 

methionine codon. daf-19c-specific promoter elements reside in introns 3 and 4 (Senti & 

Swoboda, 2008; Figure 7). A mutation of exon 3 methionine (start codon) does not yield 

expected ciliogenesis phenotypes (De Stasio, unpublished). Thus the function of protein likely 

begins in exon 4. It is believed that daf-19c is expressed specifically in sensory head neurons and 

a selected number of tail neurons, but, like daf-19a/b, the detailed expression pattern isn’t 
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characterized. Initial studies by Senti and Swoboda (2008) identified daf-19c as directly 

associated with ciliogenesis; osm-5 and bbs-7 are two identified target genes of daf-19c, both of 

which are “well-characterized, direct daf-19 target genes that are expressed in ciliated sensory 

neurons and function in cilia formation,” and are regulated through X-box binding. daf-19c also 

upregulates a suite of genes within the head neurons such as asic-2 and del-4 (predicted sodium 

channels), spg-20 (orthologue of spartin, which inhibits synaptic growth), ddn-1 (unknown), 

eppl-1 (transaminase activity), and mapk-15 (mitogen-activated protein kinase) (De Stasio et al., 

2018).  

daf-19m is the shortest isoform of daf-19 and the most recently discovered. It consists only 

of exons 6 to 12, with a daf-19m-specific modular promoter element within intron 5 (Wang et al., 

2010; Figure 7). Wang et al. (2010) reported that daf-19m is responsible for male-specific mating 

behavior. It is expressed in head neurons IL2 and male-specific CEM neurons and tail neurons 

Figure 7 Genomic representation of the daf-19 isoforms. The boxes depict exons and the line in between depict 
introns. The colored boxes depict untranslated 3’ end region. Exons are numbered above; intron numbers follow the 
exons before it. m86 and arrow points to the point mutation position in exon 7. m and arrow points to the modular 
promoter elements of daf-19m within intron 5. The four isoforms are as labeled, with the DBD spanning exon 7 to 9, 
and the dimerization domain encoded by parts of exon 11 and the entire exon 12. daf-19a exons: 1-3, 5-12; daf-19b 
exons: 1-12; daf-19c exons: 4-12; daf-19m exons: 6-12. Figure adapted from Wang et al., 2010. 
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HOB and RnB. One of the roles of DAF-19M is to properly localize the ion channel, PKD-2, 

needed for proper male mating behavior. Though daf-19m is involved in mating behavior and is 

expressed in ciliated sensory neurons, it does not regulate ciliogenesis, but rather controls 

functional specialization of sensory cilia; intriguingly, its target genes, like those of daf-19a/b, do 

not contain an X-box in their promoters (Wang et al., 2010). 

It is important to study these four isoforms individually since they share a number of exons 

that are fully sequenced. One way to study them is to perform knockouts and rescue experiments. 

This study takes the advantage of a point mutation in the seventh exon that is shared by all four 

isoforms, m86 (Figure 7), which results in complete knockout of all four isoforms encoded by 

the daf-19 gene, and allows rescue experiments with individual isoforms by means of transgene 

expression. This mutation was first found in a screen for dauer-constitutive larvae (Perkins et al., 

1986), in which the worms were arrested in dauer stage after L1 larval stage. A third of m86 

dauer worms can escape dauer stage when in a 15⁰C environment, but a more efficient practice 

for strain maintenance and experiment is to cross daf-19(m86) worms with daf-12(sa204) strain. 

Without expression of the daf-12 gene, worms are unable to enter the non-reproductive dauer 

stage. 

 

Research Aim and Approach 

The aim of this research is to fully characterize the expression pattern of daf-19c. Though 

studies have been conducted on its functions, insufficient data exist regarding the identification 

of individual neurons that expresses daf-19c (Senti & Swoboda, 2008). We are interested in this 

question because we wonder whether DAF-19 isoforms control the expression of each other and 

thus help to specify neuronal cell fates. 
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We carried out our study by expressing only fluorescently labeled DAF-19C in an otherwise 

daf-19 null genetic background. Using confocal fluorescent microscopy, we compared the daf-

19c-expressing neurons to the cholinergic and glutamatergic neuron maps made by Pereira et al. 

(2015) and Serrano-Saiz et al. (2013), and with dye-filling neurons (Figure 9A; Hedgecock et al., 

1985). Strains with cholinergic and glutamatergic marker genes were also crossed into the same 

daf-19 mutant background. Here we report the number and identity of neurons that express daf-

19c in worms of varying ages. 
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RESULTS 

Approach 

Expression of the gene daf-19 produces several related proteins, including the protein DAF-

19C (Figure 7). In this study, we aimed to identify the neurons that produce this protein. Our 

approach to the problem was to use a fluorescent marker, green fluorescent protein (GFP), to 

report the presence of the DAF-19C protein. To do so, we used a plasmid with daf-19c::gfp 

construct, pGG14 (Senti & 

Swoboda, 2008). pGG14 is a 

plasmid which contains the 

genomic DNA of daf-19 starting 

from intron 3, thus encodes 

DAF-19C from its own promoter 

(see Figure S2 for the plasmid 

structure). The gfp gene was 

attached just upstream of the 

daf-19c stop codon on the 

plasmid, such that a chimeric 

protein composed first of DAF-

19C, then GFP would be 

produced in any cell that 

expresses daf-19c gene. The 

plasmid was injected into the 

gonad of a C. elegans strain 

Figure 8 A. Map of fluorescent markers. Red indicates cholinergic neurons 
that express cho-1::mCherry fluorescent marker, and yellow indicates 
glutamatergic neurons that express eat-4::mCherry fluorescent marker. Adapted 
from Pereira et al., 2015. B. Confocal image of cholinergic neurons 
expressing cho-1::mCherry. Not all neurons are identified; identified neurons 
are sufficient for the purpose of this study. C. Map of eat-4::mCherry 
fluorescent markers. Green indicates glutamatergic neurons that express eat-
4::mCherry fluorescent marker. Confocal image shows corresponding neurons 
in different sections of the pharynx. Adapted from Serrano-Saiz et al., 2013. 
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with daf-19(m86) mutant background. Because DAF-19C is known to be a transcription factor 

and therefore is transported to the nucleus; neurons that expresses DAF-19C will fluoresce green 

in their nuclei. We identified these neurons by comparing the location of the green fluorescence 

to that of pre-defined fluorescent marker expression and that of the dye-filling neurons. One of 

the fluorescent markers was cho-1::mCherry, expressed in all 52 cholinergic neuron classes 

(Figure 8B; Pereira et al., 2015); the other marker was eat-4::mCherry, expressed in all 38 

glutamatergic neuron classes (Figure 8C; Serrano-Saiz et al., 2013). Dye-filling neurons were six 

amphid neuron classes: ASK, ADL, ASI, AWB, ASH, and ASJ (Figure 9A; Hedgecock et al., 

1985). 

Different isoforms of a gene product may interact with each other, or one isoform may 

change the expression pattern of other isoforms. To eliminate this possible interference, we 

generated strains with different fluorescent markers in the daf-19(m86) mutant background. This 

genetic background does not produce any form of DAF-19 protein, allowing us to examine 

expression patterns of any single DAF-19 isoform by injecting its gene into this background. 

LU663 is such a strain in the m86 background, injected with daf-19c::gfp. LU663 also has the 

gene elt-2::gfp injected, which exhibits green polka dot pattern in the intestine under 

fluorescence microscopes and is used to distinguish transgenic offspring from non-transgenic 

siblings. Our marker strains, LU724 (with cho-1::mCherry) and LU725 (with eat-4::mCherry), 

also have the daf-19(m86) genetic background (see Methods section and Table S2) to avoid 

interference after mating. 

We identified neurons by co-localization of the red and green fluorophores or by their 

relative positions using data from confocal microscopy. A confocal microscope collects a set of 

images at predefined, consecutive focal lengths throughout the sample, called a z-stack. Using 
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appropriate software (see Methods section), the z-stack can be compiled into either a 3D model 

or a maximum projection image (ProjMax). The 3D model is produced by aligning each image in 

the z-stack at their respective focal lengths. It is rotatable along a predefined axis, allowing for a 

spatial analysis of data. For example, in most occasions, a three-dimensional context is needed to 

ensure a genuine fluorescent co-localization. The 3D projection model, because of its rotatable 

axis, is helpful in determining whether the co-localization is genuine or caused by overlap of 

nearby fluorescent neurons. The maximum projection image is compiled by projecting the 

brightest pixel in each of the images of the z-stack onto a single image. This reconstructs a 

sharper image of the data in its entirety. 

An example of the identification of daf-19c-expressing neurons AWC, AIB, and AUA is 

shown in Figure 9. We exposed these worms to fluorescent DiI as shown in figure 9A (Altun 

with permission). Based on the orientation of dendrites and location of the neurons, we first 

determined the anterior-posterior and dorsal-ventral axes. Then we determined the identity of 

each red dye-filled neuron according to the map (Figure 9; for full map, see Figure 15). ASK, 

ADL, and ASI are on the dorsal side, one next to each other, front anterior to posterior, forming 

an arch; sitting in the hollow of the arch is AWB; below that is ASH, and the big bottom-most 

neuron is ASJ. All of these neurons are in pairs: one on the left and one on the right. Neural 

nuclei expressing DAF-19C protein are false-colored blue (Figure 9C). 

From the confocal maximum projection, we can see co-localization of red and blue in AWB; 

to the right of ASH is a neuron that is most likely ASE, judging by its position and distance (see 

pan-neuronal map, Figure 9B). Immediately left of ASJ can only be AUA, because of its 

proximity; and the neuron left of AUA and below ASH is most likely AIB. The neuron to the left 

of ASH can be either AVE or AWC, but because AWC is adjacent to AIB this neuron is more 



Liu 20 
 

likely AVE. The small dash of blue on top of ASK should be URX. Because we have no further 

anterior markers, we cannot identify the three neurons further anterior. 

The expression pattern of gene daf-19c was analyzed in this manner in a total of 27 worms. 

We separated the worms into three groups according to their stage of post-embryonic  

  

Figure 9 A. Dye-filling neurons in calcium acetate with DiI. DiI stains the entire neuron, including the axons and dendrites. 
Reproduced with permission from Zeynep Altun B. Part of pan-neuronal map of C. elegans. Red: Neurons that can be dye-
filled with DiI in M9. C. Maximum projection of a DiI dye-filled worm. White circles, arrow, and names denote the red 
dye-filling neurons. Yellow dashed circle and names denote the blue neurons expressing DAF-19C::GFP. Yellow arrow points 
out co-localization of the two fluorophores. 
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Figure 10 DAF-19C Expression in C. elegans Head Neurons. Pharyngeal bulbs outlined in grey for all images. A. Schematic map of DAF-19C expression. 
Neuron functions are color coded as follows: blue – polymodal neurons, yellow – sensory neurons, and red – interneurons. Transparency and saturation of each 
neuron directly reflect its frequency of DAF-19C expression. B. Maximum projection of confocal microscopy of neurons with DAF-19C::GFP expression. 
Neurons expressing green fluorescence attached to DAF-19C are false-colored blue. Yellow line separates the two samples. Scale bars as shown. 
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likely AVE. The small dash of blue on top of ASK should be URX. Because we have no further 

anterior markers, we cannot identify the three neurons further anterior. 

The expression pattern of gene daf-19c was analyzed in this manner in a total of 27 worms. 

We separated the worms into three groups according to their stage of post-embryonic 

development: adult (13 worms, four of which were males), L4 to young adults (eight worms, two 

of which were males), and L1 to L3 (six worms, no males). Because dye-filling only identifies 

six neurons in the posterior pharyngeal bulb, we did not include results from dye-filled worms in 

our statistical analysis; these worms were used for initial neuron identification and confirmation 

instead. 

 

DAF-19C is expressed mainly in cephalic ciliated 

sensory neurons  

We analyzed the total number of worms that 

expressed DAF-19C in specific neurons across our 

sample. Neurons in which DAF-19C expression was 

seen in fewer than five worms (<20%) were discarded 

as noise (Table S1). We identified 28 neuron pairs that 

express DAF-19C, and compiled them into a single 

neuron map (Table 1; Figure 10). Twenty sensory 

neurons, five polymodal neurons, and three interneurons were identified (Figure 11). No motor 

neurons were confirmed to express DAF-19C (Table 1). Twenty-four of the 28 daf-19c-

expressing neuron pairs were ciliated neurons; four (URX, AIB, AUA, and AVE) were not 

ciliated. The cephalic sensory neurons, FLP (non-ciliated) and AQR (ciliated), were never 

Figure 11 Percentages of neuron types with 
DAF-19C expression. 28 neurons express gene 
daf-19c::gfp: 20 sensory neurons (in yellow), 
five polymodal neurons (in blue), and three 
interneurons (in red). 
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observed to express DAF-19C (Table 2). Ciliated sensory neuron AFD was observed to express 

DAF-19C, but only in three worms (Table 1; Table S1). Because of our focus on the head 

neurons, we cannot determine whether DAF-19C was expressed in ciliated neurons located in the 

body or tail (PDE, PHA, PHB, PQR, and PVR). We have also observed and identified additional 

DAF-19C expression in male individuals. However, we were unable to identify these neurons, 

except for the CEM pairs (𝑛𝑛 ≤ 2; Figure S1).  

 We analyzed the consistency of DAF-19C expression in these 28 neuron pairs. For every 

neuron pair: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑛𝑛𝐹𝐹𝐹𝐹 (𝐹𝐹) =
𝑛𝑛𝐹𝐹𝑛𝑛𝑛𝑛𝐹𝐹𝐹𝐹 𝑜𝑜𝑜𝑜 𝑤𝑤𝑜𝑜𝐹𝐹𝑛𝑛𝑤𝑤 𝑖𝑖𝑛𝑛 𝑤𝑤ℎ𝑖𝑖𝐹𝐹ℎ 𝑡𝑡ℎ𝐹𝐹 𝑛𝑛𝐹𝐹𝐹𝐹𝐹𝐹𝑜𝑜𝑛𝑛 𝐹𝐹𝑒𝑒𝑒𝑒𝐹𝐹𝐹𝐹𝑤𝑤𝑤𝑤𝐹𝐹𝑤𝑤 𝐷𝐷𝐷𝐷𝐹𝐹-19𝐶𝐶

𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝐹𝐹𝑛𝑛𝑛𝑛𝐹𝐹𝐹𝐹 𝑜𝑜𝑜𝑜 𝑤𝑤𝑜𝑜𝐹𝐹𝑛𝑛𝑤𝑤 𝑖𝑖𝑛𝑛 𝑡𝑡ℎ𝐹𝐹 𝑤𝑤𝑡𝑡𝑛𝑛𝑒𝑒𝑡𝑡𝐹𝐹 𝑤𝑤𝑖𝑖𝑠𝑠𝐹𝐹
× 100% 

We also defined F≥80% as “consistent,” 80%>F≥30% as “frequent,” and F<30% as 

“inconsistent.” Of the 28 neuron pairs, 15 consistently expressed DAF-19C, 11 had frequent 

expression, and two had inconsistent DAF-19C expression (Table 2 & 3). Among the consistent 

DAF-19C-expressing neuron pairs, seven were ciliated sensory neuron pairs: AWC, BAG, 

CEPV, CEPD, IL2D, IL2, and OLL; five were ciliated polymodal neuron pairs: IL1D, IL1, IL1V, 

OLQD, and OLQV; three are non-ciliated, a sensory neuron—URX—and two interneurons—

AIB and AVE (Table 1, 2, & 3). Frequent DAF-19C-expressing neuron pairs include ten ciliated 

sensory neurons—ADF, ADL, ASE, ASG, ASH, ASI, ASJ, ASK, AWB, and IL2V—and one 

non-ciliated interneuron—AUA (Table 1, 2, & 3). The two neuron pairs with consistent DAF-

19C expressions are ciliated sensory neurons AWA and ADE (Table 1 & 2). There are 33 neurons 

(16 pairs and one single neuron) that are deemed to show only infrequent DAF-19C expression, 

and thus discarded as noise, and include only one ciliated sensory neuron, AFD. The rest are non-

ciliated neuron pairs: eight interneurons (AIA, AVA, AVJ, RIA, RIB, RIC, RIR, and URB), four 

motor neurons (M5, RMED, SMDV, and URAD), three polymodal neurons (ALA, SAAV, and  
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SIAD), and two sensory neurons (URAV and URY) (Table 1; Table S1)

Table 1 Ciliated and Non-ciliated DAF-19C-Expressing Neurons. 48 ciliated and 8 non-ciliated neurons were 
observed to have DAF-19C expression in our current population sample (n=27). Infrequent expression indicate neurons 

with DAF-19C gene expression in five or fewer worms. Refer to Table S1 for more data. 
Frequent Expressions Infrequent Expressions 

Ciliated 
Neurons Number 

Non-
ciliated 

Neurons 
Number Ciliated 

Neurons Number 
Non-

ciliated 
Neurons 

Number 

ADE 2 URX 2 AFD 2 ALA 2 

ADF 2 AIB 2   SAAV 2 

ADL 2 AUA 2   SIAD 2 

ASE 2 AVE 2   AIA 2 

ASG 2     AVA 2 

ASH 2     AVJ 2 

ASI 2     RIA 2 

ASJ 2     RIB 2 

ASK 2     RIC 2 

AWA 2     RIR 2 

AWB 2     URB 2 

AWC 2     M5 1 

BAG 2     RMED 2 

CEPV 2     SMDV 2 

CEPD 2     URAD 2 

IL2D 2     URAV 2 

IL2 2     URY 2 

IL2V 2    2 (1 pair)  33 (16 pairs + 1) 

OLL 2   Color Code 

IL1D 2   Sensory neurons 

IL1 2   Polymodal neurons 

IL1V 2   Interneurons 

OLQD 2   Motor neurons 

OLQV 2       

 48 (24 pairs)  8 (4 pairs)     
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Table 2 Consistency of DAF-19C Expression in Head Neurons Across Sample 
Frequency Number of Neurons Neurons 

>=0.8 (Consistent) 15 
IL1D, IL1, IL1V, OLQD, OLQV, AWC, BAG, CEPV, CEPD, 
IL2D, IL2,  OLL, URX, AIB, AVE 

0.3=<x<0.8 (Frequent) 11 
ADF, ADL, ASE, ASG, ASH, ASI, ASJ, ASK, AWB, IL2V, 
AUA 

<0.3 (Inconsistent) 2 ADE, AWA 

 
Table 3 Frequency of daf-19c Expression in C. elegans Head Neurons at Different Post-embryonic Developmental Stages. 
Table contains all neurons that in which daf-19c gene expression was identified five or more times in our sample. For neurons 
that expressed DAF-19C in five or fewer worms within our total sample (“noise”), refer to Table S1. 

  Polymodal neurons Sensory Neurons 

  IL1D IL1 IL1V OLQD OLQV ADE ADF ADL ASE ASG 

Adult (n=13) 76.9% 84.6% 92.3% 92.3% 92.3% 38.5% 53.8% 38.5% 53.8% 46.2% 

L4 & young adult (n=8) 100.0% 100.0% 100.0% 100.0% 100.0% 25.0% 100.0% 87.5% 100.0% 75.0% 

L1 to L3 (n=6) 100.0% 100.0% 100.0% 100.0% 100.0% 0.0% 100.0% 100.0% 100.0% 66.7% 

Total percentage (n=27) 88.9% 92.6% 96.3% 96.3% 96.3% 25.9% 77.8% 66.7% 77.8% 59.3% 

  Sensory Neurons 

  ASH ASI ASJ ASK AWA AWB AWC BAG CEPV CEPD 

Adult (n=13) 53.8% 38.5% 53.8% 30.8% 7.7% 53.8% 69.2% 92.3% 69.2% 69.2% 

L4 & young adult (n=8) 75.0% 62.5% 87.5% 50.0% 37.5% 87.5% 87.5% 87.5% 100.0% 100.0% 

L1 to L3 (n=6) 83.3% 83.3% 100.0% 66.7% 16.7% 100.0% 100.0% 100.0% 100.0% 100.0% 

Total percentage (n=27) 66.7% 55.6% 74.1% 44.4% 18.5% 74.1% 81.5% 92.6% 85.2% 85.2% 

  Sensory Neurons Interneurons   
  IL2D IL2 IL2V OLL URX AIB AUA AVE   
Adult (n=13) 76.9% 69.2% 61.5% 92.3% 84.6% 76.9% 61.5% 69.2%   
L4 & young adult (n=8) 75.0% 87.5% 75.0% 100.0% 100.0% 87.5% 75.0% 100.0%   
L1 to L3 (n=6) 100.0% 100.0% 100.0% 83.3% 100.0% 83.3% 100.0% 100.0%   
Total percentage (n=27) 81.5% 81.5% 74.1% 92.6% 92.6% 81.5% 74.1% 85.2%  

 

 
DAF-19C expression differs in adults 

To examine whether DAF-19C expression is consistent in different age groups, we separated 

our sample into three groups based on their developmental stage: adults, L4 larvae and young 

adults, and L1 to L3 larvae. L1 to L3 larvae are sexually immature, and from L4 developmental 
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stage to young adult stage, worms begin to become sexually active but cannot produce eggs. This 

grouping strategy was also convenient for identifying worm age based on physical features. For 

the larvae, the defining structure in identification was the future uterus, in the appearance of a 

void space at the intestine (Figure 12A). If the space was present, and the worm was slim, then it 

was an L4 larva. Any worms smaller in size and without the void space were classified as L1 to 

L3 larvae, with L1 worms being the smallest; worms bigger than L4 worms with a wider space 

but had no eggs were classified as young adults. Any worm with at least one egg was classified 

as an adult. Adults were usually much bigger under the microscope. Males were identified from 

Figure 12 Bright-field microscopy image of C. elegans identifying structures. A. The intestine of an L4 
larva. Red arrow and dashed line indicate the “void space” that is the future uterus and vulva site. Blue dashed 
line outlines the worm of interest. B. The barbed tail of a male young adult C. elegans. Red arrow indicates 
the tail. Yellow dashed line outlines the worm of interest. 

 



Liu 27 
 

their characteristic tails (Figure 12B), which were not discernable until the young adult stage. 

Thus worm sex was only identified in young adults and adults.  

We hypothesized that in different developmental stages, there would be a difference in DAF-

19C expression in the head neurons. We first described our data with average frequencies (𝐹𝐹) of 

DAF-19C expression in different neural function groups (polymodal, sensory, and interneurons), 

by defining 𝐹𝐹 as 

𝐹𝐹 =  
∑(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (𝐹𝐹) 𝑜𝑜𝑜𝑜 𝐹𝐹𝑒𝑒𝐹𝐹𝐹𝐹𝐹𝐹 𝑛𝑛𝐹𝐹𝐹𝐹𝐹𝐹𝑜𝑜𝑛𝑛 𝑒𝑒𝑡𝑡𝑖𝑖𝐹𝐹 𝑖𝑖𝑛𝑛 𝑡𝑡ℎ𝐹𝐹 𝑛𝑛𝐹𝐹𝐹𝐹𝐹𝐹𝑜𝑜𝑛𝑛 𝑜𝑜𝐹𝐹𝑛𝑛𝐹𝐹𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 𝑔𝑔𝐹𝐹𝑜𝑜𝐹𝐹𝑒𝑒)

𝑡𝑡ℎ𝐹𝐹 𝑛𝑛𝐹𝐹𝑛𝑛𝑛𝑛𝐹𝐹𝐹𝐹 𝑜𝑜𝑜𝑜 𝑛𝑛𝐹𝐹𝐹𝐹𝐹𝐹𝑜𝑜𝑛𝑛𝑤𝑤 𝑖𝑖𝑛𝑛 𝑡𝑡ℎ𝐹𝐹 𝑜𝑜𝐹𝐹𝑛𝑛𝐹𝐹𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 𝑔𝑔𝐹𝐹𝑜𝑜𝐹𝐹𝑒𝑒
 

For example, for the interneuron functional group, 

𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  
76.9% + 61.5% + 69.2% (𝐭𝐭𝐭𝐭𝐭𝐭 𝐬𝐬𝐬𝐬𝐬𝐬 𝐨𝐨𝐨𝐨 𝐨𝐨𝐟𝐟𝐭𝐭𝐟𝐟𝐬𝐬𝐭𝐭𝐟𝐟𝐟𝐟 𝐨𝐨𝐨𝐨 𝐀𝐀𝐀𝐀𝐀𝐀,𝐀𝐀𝐀𝐀𝐀𝐀,𝐚𝐚𝐚𝐚𝐚𝐚 𝐀𝐀𝐀𝐀𝐀𝐀)

3 (𝐭𝐭𝐭𝐭𝐭𝐭 𝐚𝐚𝐬𝐬𝐬𝐬𝐧𝐧𝐭𝐭𝐟𝐟 𝐨𝐨𝐨𝐨 𝐢𝐢𝐚𝐚𝐭𝐭𝐭𝐭𝐟𝐟𝐚𝐚𝐭𝐭𝐬𝐬𝐟𝐟𝐨𝐨𝐚𝐚𝐬𝐬) , 

which is 69.2% for the adult group. We found that DAF-19C expression was less frequent in 

adults for neurons of all three functional groups when compared to the other two age groups 

(Table 3; Figure 13). There was noticeably less frequent DAF-19C expression in the L4 and 

young adult group compared to the L1 to L3 group (Figure 13). Similar results were found when 

we compared DAF-19C expression frequencies in individual neurons between different age 

groups. Except for neurons ADE and AWA, in every neuron, DAF-19C was less frequently 

expressed in the adult group than the other two age groups (Figure 14). DAF-19C expression in 

ADE was most frequently seen in adults, followed by L4 and young adults, but non-existant in 

younger L1 to L3 larvae (Figure 14). In AWA and ASG, L4 and young adult worms expressed 

DAF-19C most frequently, followed by L1 to L3 larvae, and least frequently in the adults (Figure 

14). DAF-19C expression frequency in ASK follows the general pattern, but is noticibly lower in  
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Figure 14 Frequency of DAF-19C expression in individual neuron pairs at different developmental stages. 
𝑁𝑁𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 = 13,𝑁𝑁𝐿𝐿4 & 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛 𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 = 8, 𝑁𝑁𝐿𝐿1−𝐿𝐿3𝑖𝑖 = 6. For F values, refer to Table 3. 
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Figure 13 Frequency of DAF-19C expression in different neuron groups according to developmental stage. 
Averages are taken from the frequency of DAF-19C expression in polymodal, sensory, and interneurons across 
samples. Error bars show standard error. 𝑛𝑛𝑝𝑝𝑖𝑖𝑎𝑎𝑦𝑦𝑝𝑝𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 = 5,𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑦𝑦 = 20,𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 3;𝑁𝑁𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 =

13,𝑁𝑁𝐿𝐿4 & 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛 𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 = 8, 𝑁𝑁𝐿𝐿1−𝐿𝐿3𝑖𝑖 = 6. For 𝐹𝐹 values, refer to Table 4. 
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 all three age groups when compared to that in the other neurons (Figure 14). 

We further analyzed our data with statistical tests. Because our dataset had only one 

independent variable (developmental stage) that was separated into three categories, and our 

numerical dependent variables (frequency of DAF-19C’s presence in a neuron across the sample) 

did not follow normal distribution, we used Kruskal-Wallis test for equal medians to test our 

hypothesis, and Mann-Whitney pairwise test to identify differences between age groups. We 

found that there is a significant difference in DAF-19C expression frequency among the age 

groups (𝐻𝐻 = 23.97, 𝑒𝑒 = 3.04 × 10−6 ≪ 0.05; Box 2). Post hoc analysis with Mann-Whitney 

pairwise test further confirmed previous observations in Figure 13 and Figure 14, that the adult 

group expresses DAF-19C less frequently in their head neurons (𝑒𝑒𝐴𝐴𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖/𝐿𝐿4&𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝐴𝐴𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 =

3.51 × 10−4,𝑒𝑒𝐴𝐴𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖/𝐿𝐿1−𝐿𝐿3𝑖𝑖 = 2.90 × 10−6; Box 2). 

Box 2 Results of Statistical Analysis Test. Kruskal-Wallis Test for Equal Medians and Mann-Whitney Pairwise for average DAF-19C 
expression frequency in head neurons in different ages. 𝑁𝑁𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 = 13,𝑁𝑁𝐿𝐿4 & 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛 𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 = 8, 𝑁𝑁𝐿𝐿1−𝐿𝐿3𝑖𝑖 = 6. Tests done through PAST 3. 

Kruskal-Wallis Test for Equal Medians  Mann-Whitney Pairwise Test  
    

  H (chi2): 23.97      Adults L4 & Young Adults L1 - L3s  

  Hc (tie corrected): 25.41    Adults   3.51E-04 2.90E-06  
  p (same): 3.04E-06    L4 & Young Adults 3.51E-04  0.09583   

  L1 - L3s 2.90E-06 0.09583    
There is a significant difference between sample 

medians 
 

*Raw p values, uncorrected significance 
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DISCUSSIONS 

DAF-19C is expressed in both ciliated and non-ciliated neurons, primarily in sensory neurons 

To determine the cell-specific expression pattern of the C-isoform of the daf-19 locus, we 

expressed the transgene daf-19c::gfp in worms with a daf-19(m86) genetic background. We used 

the dye-filling method along with fluorescently marked reporter genes, cho-1::mCherry and eat-

4::mCherry, to identify neurons that express DAF-19C. We found 28 pairs of head neurons with 

DAF-19C expression. Twenty-four of the 28 neuron pairs were ciliated neurons, which included 

five polymodal neuron pairs and 19 sensory neuron pairs. Four of the 28 neuron pairs were non-

ciliated neurons, which included three interneurons and one sensory neuron. We did not examine 

DAF-19C expression in tail neurons. 

Our study broadly agrees with conclusions from previous research on daf-19 expression. 

Senti & Swoboda (2008), using immunostaining, found that DAF-19C is “restricted to a small 

set of neurons in the head and the tail, a pattern reminiscent of ciliary sensory neurons.” Our 

study shows that this is mostly correct. A huge portion of DAF-19C expression is located in 

ciliated neurons, and all of these are either sensory neurons or have sensory functions. The five 

polymodal neuron pairs, IL1D, IL1, IL1V, OLQD, and OLQV, all have mechanosensory 

functions (Altun and Hall). However, our study contradicts Senti & Swoboda’s conclusion that 

DAF-19C is expressed only in ciliated sensory neurons, and that together with DAF-19A/B-

expressing non-ciliated neurons exhibits “basically a pan-neuronal expression pattern of DAF-

19” (2008). We found DAF-19C expression in non-ciliated sensory neurons URX, which is also 
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a ring interneuron, and in three neuron pairs, AIB, AUA, and AVE, that are currently cataloged as 

non-ciliated interneurons (Altun & Hall). 

 

DAF-19C expression in non-ciliated neurons could explain feeding/roaming behaviors 

Senti and Swoboda (2008) found that daf-19(m86) mutants in C. elegans have abnormal 

feeding and roaming patterns, and these abnormal behaviors could only be partially rescued if 

only one daf-19 isoform is expressed. They conclude that, because the presence of DAF-19A 

could rescue the feeding/roaming defect, DAF-19 may have a new role in the maintenance of 

synaptic neurotransmission. Indeed, Senti and Swoboda found DAF-19A/B isoforms maintains 

synaptic protein expression (2008). 

We would like to push this further by suggesting that DAF-19C also has additional functions 

in synaptic neurotransmission. DAF-19C has been proven to be involved in ciliogenesis (Senti & 

Swoboda, 2008), however, our characterization of DAF-19C expression shows that it is also 

expressed in non-ciliated neurons involved in feeding (AIB, AUA, and URX) and locomotion or 

sensory-based locomotion (AVE and URX). Because non-ciliated neurons do not have cilia and 

thus have no requirement for ciliary-related proteins, DAF-19C must have another function 

unrelated to ciliogenesis and cilia maintenance when expressed in these neurons. Because DAF-

19A maintains synaptic protein expression and can partially rescue feeding/roaming behavior 

alone, and DAF-19C can also partially rescue this behavior, we believe DAF-19C has a similar 

synaptic-related function in non-ciliated neurons, and perhaps in a few ciliated polymodal 



Liu 32 
 

neurons. This hypothesis is in line with the study by De Stasio et al. (2018), who identified a 

downstream regulation of spg-20 by daf-19c. spg-20 is an orthologue of human spartin, whose 

product is involved in endosomal trafficking (transport of molecules between organelles within a 

cell) and interacts with microtubules, and therefore synaptic growth and possibly 

neurotransmission. 

 

AWA, ADE, and ASK show noticeably lower DAF-19C expression frequency 

We calculated the frequency of DAF-19C expression in the identified neurons within our 

sample size, and grouped the neurons accordingly as consistent, frequent, and inconsistent. We 

found two neuron pairs that inconsistently expressed DAF-19C: AWA (𝐹𝐹 = 18.5%) and ADE 

(𝐹𝐹 = 25.9%), and one neuron, ASK, in which the expression frequency is lower than 50%. 

We believe the observation of low frequency expression in AWA and ADE are due to human 

error and our methodology. AWA neurons are neither cholinergic nor glutamatergic nor one of 

the dye-filling neurons, meaning that none of our available fluorescent markers are able to tag its 

location. We could only identify AWA from its position relative to our markers. Most of our AWA 

identifications came from our dye-filling samples, and its position between AWB and ASH 

meant that it was easy to mistake other neurons such as ASE and ASG with AWA (Figure 15). 

However, we have at least two instances in which we identified DAF-19C expressions in AWA 

neurons alongside AWB and ASH neurons. ADE is located in the far posterior of the posterior 
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Figure 15 Identification of neurons expressing the gene of interest. Compiled map of cholinergic, glutamatergic, dopaminergic, and dye-filling neurons according to previous 
studies (Pereira et al., 2015; Serrano-Saiz et al., 2013; Sulston, Dew, & Brenner, 1975; Hedgecock et al., 1985). Adapted from Altun et al. 
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pharyngeal bulb (Figure 15) and is a dopaminergic neuron (Sulston et al., 1975). Because of our 

focus on the majority of neurons between the anterior and posterior pharyngeal bulbs, our 

imaging usually did not capture neurons located around the posterior pharyngeal bulb. The low 

frequency of image capture in the proximity of ADE contributed to its low frequency of 

identification, which in turn resulted in the observation of inconsistent DAF-19C expression. 

DAF-19C expression in AWA and ADE could be confirmed with appropriate fluorescent 

markers, such osm-9 for AWA (Colbert et al., 1997) and dat-1 for ADE (Nass et al., 2002). 

Colbert et al. (1997) reported that a region close to the osm-9 promoter is sufficient to drive 

OSM-9 expression in AWA. Thus, a fluorescent marker, osm-9::mCherry, could be synthesized 

and injected into LU663 to for fluorescence co-localization observation. Similarly, matings 

between a strain with dat-1::mCherry fluorescent transgenic marker and LU663 could confirm 

DAF-19C expression in ADE. We could not conduct this mating because our own strain of dat-

1::mCherry reporter gene is co-injected with elt-2::gfp, which interferes with the marker of 

LU663 during offspring screening. 

The low expression frequency of DAF-19C in ASK differs from that of AWA and ADE in 

that it is unlikely to be an artifact of imaging or neuronal identification. ASK is one of the six 

dye-filling neurons (Figure 9A; Hedgecock et al., 1985), and with green fluorescent protein 

attached to the protein of interest, expression of DAF-19C should be easy to spot in ASK if 

present. However, more than half of our samples did not have DAF-19C::GFP observed in ASK. 

Human error is clearly not the reason for its low expression frequency. We have also eliminated 
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the possible effect of mosaicism from the loss of transgene. When cells divide, the two daughter 

cells may receive an unequal amount of free plasmid. This process would repeat over time and 

result in an eventual loss of the plasmid in certain cells randomly. However, ASK is not the last 

DAF-19C-related neuron to arise from cell division (Sulston et al., 1983): all five polymodal 

neuron pairs arise after ASK, yet these are classified as consistent DAF-19C-expressing neurons 

(Figure 14). The proposed mosaicism, if indeed is the case, could be amended by integrating the 

gene of interest, daf-19c::gfp, into the genome of a strain in the daf-19(m86) background, and 

then observe through dye-filling for co-localization. Therefore, low DAF-19C expression 

frequency in ASK implies a biological significance. Because DAF-19C is responsible for 

ciliogenesis and cilia maintenance, our observation in ASK may point to the fact that ASK 

neurons do not require a constantly high amount of DAF-19C for ciliary maintenance. It is 

possible that daf-19c is not constitutive in ASK neurons, though the exact mechanism and reason 

is unknown. 

 

DAF-19C expression decreases with age 

We compared DAF-19C expression frequency between different developmental stages and 

found significantly lower expression of DAF-19C only in adults. The expression frequency in L4 

larvae and young adults is observably lower than in L1 to L3 worms, but not statistically 

significant. This might be that, during the ciliogenesis process, once the main structure of the 

cilium is assembled, less DAF-19C amount would be needed for growth and maturation. This 
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would account for the observable insignificant decrease of DAF-19C expression frequency in L4 

and young adults. For adults, after the cilium is mature, it is likely that less DAF-19C is required 

for the continual cilium maintenance. Cilium maturation would coincide with reproductive 

maturation at the adult stage; more energy would be directed for reproduction, instead of 

structural maintenance. This would lead to significantly less frequent daf-19c activity; daf-19c 

would be activated only when needed. 

However, it is crucial to keep in mind that the frequency of DAF-19C expression is not the 

same amount as that of DAF-19C expression within a cell, or the activity of daf-19c gene. To 

measure the amount of DAF-19C expression, a test of fluorescence intensity should be 

conducted. We could not conduct an intensity test for this study because we did not keep a 

consistent excitation wavelength intensity during image collection with confocal microscopy. 

Our experimental worm strains suffer from mosaicism; the transgene and its fluorescent marker 

were lost occasionally during cell division, resulting in inconsistent expression amount across 

our sample size. Our excitation wavelength intensity and smart gain value had to be adjusted 

based on every sample in order to be sure that we could see expression in every neuron.  

The test for fluorescent intensity should be conducted with most preferably integrated daf-

19c::gfp gene for consistent expression and thus a consistent excitation wavelength intensity and 

smart gain value. The maximum projection image should then be analyzed with ImageJ for 

fluorescent intensity in each neurons. The brighter the fluorescence in a neuron, the more robust 

its DAF-19C expression, and the more amount of DAF-19C protein there is within the cell. 
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Comparing the brightness across different age groups would yield more detailed expression 

relationships between DAF-19C and age. 

 

Moving forward: interactions between different daf-19 isoforms 

As aforementioned, our study adds to previous research on the expression pattern of daf-19c 

and provides more specific characterization of the expression pattern. Using antibodies against 

the N- and C-terminals of DAF-19 isoforms, Senti & Swoboda (2008) found a mutually 

exclusive expression pattern of the A/B and C isoforms of DAF-19: DAF-19C is expressed only 

in ciliated sensory neurons and DAF-19A/B is expressed in non-ciliated neurons. Also noted 

before was that in daf-19(null) mutant worms, whose feeding/roaming behavior is impaired, 

injection of either A/B isoform or C isoform would partially rescue the behavioral defect. Based 

on these results and ours, we hypothesize that there is an interaction between the two DAF-19 

isoforms that confers repression of the C isoform expression in certain non-ciliated neurons, if 

not other ciliated neurons as well. 

We suggest one experiment for future studies in order to examine the interaction between the 

longer and the shorter DAF-19 isoforms. Express both DAF-19A and DAF-19C::GFP together in 

a daf-19(m86) genetic background, and observe the expression patterns of the C isoform under 

this condition. 
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MATERIALS & METHODS 

All C. elegans strains (Table S2) used were cultured following standard procedures 

(Brenner, 1974). 

 

Dye-filling 

Dye-filling was used to stain the amphid neurons, either as a marker for the amphid neurons 

or to determine whether a strain had functional neuronal cilia. 

Dye-filling protocol was adapted from Worm Atlas. Dye solution was prepare with 1.5 ml 

M9 solution and 15 μl of 2.0 mg/ml DiO (Molecular Probes, catalog #D275) or DiI (Molecular 

Probes, catalog #282) in dimethylformamaide before every dye-filling. Worms were washed 

from agar plates into a 1.5 ml Eppendorf tube and spun in a centrifuge until a pellet was formed. 

The supernatant was removed with a vacuum and the entire dyeing solution was added. The tube 

was left on a rocker for one hour at medium rotation, and was spun again on a centrifuge until a 

pellet was formed. The supernatant was removed and 1.5 ml M9 solution was added, vortexed, 

and spun down in a centrifuge. After the supernatant was removed again (the washing with M9 

was repeated if needed), the worm pellet was left on a fresh NGM plate for 5 to 8 hours before 

mounting on worm pads. 

 

Mutant Strain 

To analyze the expression pattern of DAF-19C, a strain expressing a fluorescently labeled 
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DAF-19C, but no other DAF-19 proteins was used. This strain. LU663, was constructed through 

microinjection of a plasmid expressing DAF-19C::GFP (Figure S2) from its endogenous 

promoter into hermaphrodites containing a knockout allele called daf-19(m86ts). However, the 

m86 allele confers a constitutive dauer phenotype in which animals do not reach reproductive 

age. This was remedied by the daf-12(sa204) knockout: without a functional copy of daf-12, the 

worms cannot enter dauer, allowing for reproduction and strain maintenance. 

A co-injection marker gene, elt-2::gfp, was used to identify transgenic worms. elt-2 

expressed only in the gut (Sommermann et.al, 2010). Expression of this gene confers either a 

polka dot pattern in the gut when tagged with gfp or an entire red gut when tagged with mCherry. 

Thus these two markers do not interfere with the expression pattern of our gene of interest, daf-

19c. 

 

Neuronal Markers 

The two markers used in the study were cho-1::mCherry (in LU724) and eat-4::mCherry (in 

LU725) (Pereira et al., 2015; Serrano-Saiz et al., 2013). Both markers were integrated into a 

chromosome (Unpublished data). 

LU724 were constructed from a cross between OH13646, kindly provided by Oliver 

Hobert’s lab from Columbia University, and LU602 (with unc122::mCherry as transgenic 

marker), constructed by Rosie Bauer at Lawrence University. UNC-122 is expressed mainly in 

coelomocytes (Loria et al., 2004), and the unc-122::mCherry marker shows up as two clusters of 
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two red dots along the ventral side of the worm. To generate DAF-19C-expressing strains that 

also carries a fluorescent neuronal marker, offspring from the initial mating (F1) were screened 

for both the presence of both red cho-1 neurons and red coelomocytes. These were singly 

transferred onto new plates. At the F2 generation, worms were screened for red neurons only, and 

were again singly transferred. The F3 generation was subjected to a two-way screening. These 

plates were first screened for homozygous cho-1::mCherry genotype through fluorescent 

microscopy, and then screened for daf-19(m86) genetic background through DiI dye-filling. Dye-

filling defective individuals with red neurons were singly plated again for further confirmation. 

LU725 was constructed in a similar fashion (Figure 16). However, due to the fewer numbers 

 
Figure 16 Flowchart for the procedure of making the marker strain LU724. 

F3
selected plates with homozygous

cho-1 through fluorescent microscopy
singly selected dye-fill-defecient worms

F2
singly selected for individuals with red neurons only

F1
singly picked individuals with red neurons and red coelomocytes

LU602                                          OH13645
F52; daf-19(m86ts) cho-1::mCherry
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of glutamatergic neurons (Serrano-Saiz et al., 2013) and thus less-to-no observable fluorescence, 

screening of offspring was conducted using confocal microscopy. From the F1 generation, 

hermaphrodites that could dye-fill and without red coelomocytes were singly picked onto 

numbered plates. Dye-filling defective offspring from F1 were singly picked onto numbered 

plates. Once L1 larvae (the F3 generation) were observed on the plate, the F2 hermaphrodites 

were then mounted onto dotted worm pads (described below) for confocal microscopy. Worms 

were screened for the presence of red glutamatergic neurons. Only plates derived from worms 

with red neurons were then kept for the next step. F3 worms were further randomly picked and 

placed singly onto fresh NGM plates. When the plates become near-starved, half of each plate 

was washed and dye-filled with DiO to screen for daf-19(m86) background. These worms were 

then washed and mounted onto numbered worm pads to check for homozygous eat-4::mCherry 

genotype. Homozygote checks were repeated until the desired traits were confirmed. 

The strains on which we performed the expression characterization were LU728, LU730, 

and LU663 itself. LU728 was a cross from LU725 and LU663, which helped us measure daf-19c 

neurons against the cholinergic neuron markers in a daf-19(m86) background. LU730 was a 

cross from LU725 and LU663, similar to LU728 except for having eat-4::mCherry as neuron 

marker. The construction procedures were similar to that of cho-1::mCherry marker strain 

construction, except that in these crossings, we singly picked the appropriate worms with green 

polka dot patterns in the guts as well, and did not have to screen for m86 allele. 

 



Liu 42 
 

 

Confocal Microscopy Preparation 

All worm pads were made of 2.0% agarose according to standard procedure (Appendix) 

except for the dotted worm pad used during eat-4::mCherry screening. 

Dotted worm pads were prepared from 750 μl of 2% agar and 15 μl of NaN3. A total of 60 μl 

of prepared agar was dripped onto a 75x25x1 mm microscope slide to form 5 dots of agar 

(Figure 17). Each agar dot was numbered on the underside of the slide, and worms were mounted 

singly to each dot using a worm pick. The mounted worm pads were then covered with 

rectangular #2 cover slips for confocal microscopy. 

 

Confocal Microscopy 

Confocal microscopy was done on Leica TCS SP5 II confocal microscope at Lawrence 

University, using HCX PL APO CS 40x/1.3 Oil objective lens. Raw data were collected with 

Leica Application Suite Advanced Fluorescence version 2.7.3.9723 (LAS AF), with 17% argon 

 
Figure 17 Dotted worm pads. Made with five 60 μl dots of 2% agar/NaN3 solution on a microscope slide, 
covered with #2 coverslip. 

Slide                        rectangular cover slip                           agar

1 2

3

4 5
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laser, HeNe 543 and HeNe 594 lasers active. HyD2 scanhead detected Leica/EGFP with a 

spectral range between 488-533 nm, and HyD4 scanhead detected Leica/mCherry between 656 

and 696 nm. The PMT transmission collected DIC images. The wavelengths were set as 

following: 458 nm at 5%, 476 nm at 17%, 543 nm at 21%, and 594 nm at 19%. These were 

changed accordingly to the fluorescence of individual worms for brightness. During collection, 

the worms were first oriented with their heads in horizontal direction, and then DIC images of 

the worm’s abdomen was taken at zoom 1.7 to determine dorsal-ventral orientation and age. Z-

stacks were acquired using a scanning frequency of 5000 Hz with line average of 8. Pinhole size 

was adjusted from specimen to specimen for adequate neuron visualization. A zoom of 4 was 

used for worms aged from L4 to adult, while a zoom of 6 was used for worms aged from L3 and 

under. Only rarely a magnification of 5 was used. Other settings were at default (z-step size were 

default 0.17 μm). 

The collected images were edited using software LAS AF and FIJI. 3D projection movies 

were 60 frames from -90⁰ to 90⁰ rotating along the x-axis when produced in LAS AF, and 360 

frames from 0⁰ to 360⁰ rotating along x-axis when in FIJI. Movies were exported at 20 fps as .avi 

format. 

 

Neuron Identification 

The procedure of the identification of particular neurons was done as described in the 

Results section. The following programs were used in the process: LAS AF and FIJI for image 
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comparison, Windows Media Player (WMP) and Media Home Player – Black Edition (MHP-

BE) for ProjMax movie playback, and Adobe Photoshop for image marking and conversion to 

PDF. Our own reference map (Figure 15) was prepared from a pan-neuron map from WormAtlas 

(Altun & Hall), blanked out through Photoshop, and then marked with known cholinergic 

(Pereira et al., 2015), glutamatergic (Serrano-Saiz et al., 2013), dopaminergic (Sulston, Dew, & 

Brenner, 1975), and dye-filling neurons (Hedgecock et al., 1985). Composite images and 3D 

maximum projection movies of worms were made using either LAS AF of FIJI. These were then 

identified as previously described using Photoshop. 

 

CONCLUSION 

We characterized DAF-19C expression in the head neurons of C. elegans. It is one 

component of basic research to understand the function of the DAF-19 gene. DAF-19C is an 

orthologue of the human RFX transcription factors, and an important transcription factor for C. 

elegans, targeting a suite of genes within its head neurons—some of the genes’ functions are yet 

to be characterized. We hope this study lays down another piece of the foundation for future 

neuronal research, and paves the way for more to come. 
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SUPPLEMENTARY MATERIALS 

Table S1 Neurons in which DAF-19C Expression is Regarded as Noise. Five or fewer worms in our sample size expressed DAF-19C in the neurons listed 
below. These expressions were discarded as noise. Samples include dye-filled worms, where most occurrences happen.  

  Polymodal neurons Sensory Neurons Interneurons 
  ALA SAAV SIAD AFD URYV AIA AVA AVJ RIA 
Adults (n=22) 0 0 1 2 1 3 0 0 1 
L4 & young adults (n=11) 0 0 0 0 1 0 2 1 2 
L1 to L3s (n=15) 3 0 0 1 1 0 3 0 0 
Total occurrence (n=48) 3 0 1 3 3 3 5 1 3 
Percentage 6.7% 0.0% 2.2% 6.7% 6.7% 6.7% 7.4% 2.2% 6.7% 
  Interneurons Motor Neurons 
  RIB RIC RIR URB M5 RMED SMDV URAD URAV 
Adults (n=22) 0 1 1 0 0 0 0 0 0 
L4 & young adults (n=11) 1 0 0 1 1 1 1 0 1 
L1 to L3s (n=15) 0 1 0 0 0 0 0 0 0 
Total occurrence (n=48) 1 2 1 1 1 1 1 0 1 
Percentage 2.2% 4.4% 2.2% 2.2% 2.2% 2.2% 2.2% 0.0% 2.2% 
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Table S2. C. elegans Strains Used in this Study 
Lab Strain Genotype Phenotype Parental 

Strain 
Comments 

LU  602 daf-19(m86)II; daf-12(sa204)X; 
him-5(e1490)V; 
ofEX1076[pF52D2.2, unc-
122::dsRed] 

ds red in 
coelomocytes 

OE4476 - 
remade from 
LU649, 
OE3738, and 
OE3492 

Bonnie 
Arbuckle, 
2013. 
Remade by 
Rosie Bauer 

LU 663 daf-19(m86)II; daf-12(sa204)X; 
him-5(e1490)V; lrEX176[pGG14, 
elt-2::gfp]  

transgenic 
worms dye-fill, 
non-transgenic 
do not, green 
speckled 
intestine 

LU3492 
injected with 
pGG14, isolate 
3 

Brian 
Piasecki & 
Elizabeth De 
Stasio 

LU 724 daf-19(m86); daf-12(sa204); him-
5(e1490); cho-1::mCherry 

isolate 8A2 OH13646 x 
LU602 (non-
transgenic) 

Billy Liu 

LU 725 daf-19(m86); daf-12(sa204); him-
5(e1490); eat-4::mCherry 

dye-fill 
deficient and 
dauer deficient 

OH13645 x 
LU602 (non-
transgenic) 

Billy Liu 

LU 726 daf-19(m86); daf-12(sa204); him-
5(e1490); cho-1::mCherry 

isolate 6B1 OH13646 x 
LU602 (non-
transgenic) 

Billy Liu 

LU 728 daf-19(m86); daf-12(sa204); him-
5(e1490); cho-1::mCherry; 
otIs544[cho-
1(fosmid)::SL2::mCherry::H2B] 

cho-1 + daf-
19C 

LU663 x 
LU724 

Billy Liu 

OH 13645 pha-1(e2123)III; him-5(e1490); 
otls518[eat-4::SL2::mCherry pha-
1+] 

integrated 
transgenic line, 
glutamatergic 
mCherry 
marker 

  From Oliver 
Hobert Lab 

OH 13646 pha-1(e2123)III; him-5(e1490); 
otls544[cho-
1::SL2::mCherry+pha-1+] 

integrated 
transgenic line, 
cholinergic 
mCherry 
marker 

  From Oliver 
Hobert Lab 
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Figure S1 Maximum projection image of a young adult male worm showing CEMD with red glutamatergic neuron 
marker. Red indicates eat-4::mCherry marker neurons; blue indicates DAF-19C::GFP expression. White dotted line indicates 
location of the pharynx. Additional unidentifiable DAF-19C-expressing neurons are indicated by arrows. Scale bar as shown. 

Figure S2 Structure of daf-19 gene in plasmid in LU663. pGG14 starts at the third intron of the genomic daf-19 gene, thus 
contains all the nucleotide sequences needed for DAF-19C expression. Figure adapted from Senti & Swoboda, 2008. 
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APPENDIX 
(Courtesy of Brian Piasecki) 

Worm Pad & Slide Preparation (Perform 30‐45 minutes before your scheduled microscope 

time) 

− Place 0.75ml tube of 2% agarose in 95C heat block (cap with cover to prevent from 
opening). 

− After agarose has completely melted, transfer the tube to a 45C heat block to begin to cool. 
− Wait 1‐2 minutes and then add 15μl of 1M sodium azide (20mM solution total). 
− Mix the tube by quickly inverting the tube a few times and return it to the heat block (be 

careful not to allow the agarose to solidify) – repeat if necessary. 
− Prepare worms by washing them from plates into a 1.5ml disposable screw‐cap tube as 

follows: 
o Add 1.5 to 2ml of fresh M9 growth medium to a plate. 
o Pipette the liquid up and down several times, using the stream coming out of the 

pipette tip to dislodge the worms on the plate. 
o Quickly transfer the liquid containing the worms into the tube. 

− Wait for worms to settle completely, and then remove most of the liquid (leave only about 
200 μl in the bottom) by pipetting the liquid off the top of the pellet. 

− When worms are ready and the agarose is prepared, transfer the agarose solution in the 
heat block from the upstairs to the basement room with the confocal microscope (likely 
best to have the person working with you meet you in lab first). Bring your worms along 
with you too! 

 

Use the following image as a guide for making a worm pad 

− Line up 3 slides, the two outside slides should contain a strip of labeling tape down the 
middle. 

− Use the P1000 with a blue tip to pipette a drop of agarose (measuring does not work well) 
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onto the center of a slide that is sandwiched between two slides with tape. 
− Quickly place another slide on top so that it rests on the taped slides (the tape prevents 

the pad from being squeezed too thin). 
− After 10‐30 seconds, remove the top (or bottom) slide leaving a pad on one of the two of 

them. 
The remaining slide without agarose can be reused. 

− Place 3‐5 μl of concentrated worms onto the pad and quickly affix a coverslip. 
− Worms will only be good for imaging for ~15minutes. 
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