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INTRODUCTION 

 Aquatic environments are ever changing systems, with multiple drivers and 

related effects that can change in time and space.  The alteration of aquatic systems is an 

interesting and important area of scientific study. By gaining more knowledge and insight 

regarding the causes and effects of the various factors, scientists aim to limit, minimize, 

and predict the negative consequences of ecosystem change while maximizing the 

benefits of such change. Examples of factors that have the ability to change the overall 

functioning of an aquatic ecosystem include climate change, eutrophication, nutrient 

loading, biological invasions, and a plethora of anthropogenic activities. Many of these 

factors cause negative impacts and can heavily influence system change, and therefore 

they are the focal point of many scientific research studies aimed at investigating aquatic 

ecosystem functioning.  

The effects and impacts of these drivers of ecosystem change can be seen through 

alterations of community structure, food web dynamics, nutrient cycling, and optimal 

habitats for current residents. It should be noted that these factors mentioned are not 

independent of one another; the occurrence of one could likely cause the occurrence of 

another. For example, a change in nutrient loading, likely through anthropogenic related 

activities, can cause eutrophication which then alters the food web and could provide a 

situation where an opportunistic invader species could out-compete native resident 

species due to the ecosystem change (Dorgham, 2014). Global climate change can also 

influence and/or cause many changes and presents a risk for virtually all biotic 

components in aquatic ecosystems (Doney et al. 2012). Overall, these factors present 

multiple hazards to aquatic ecosystems and their effects differ in time and across different 
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systems. This, along with the interdependence of the factors makes studying their causes 

and effects even more difficult. This study deals with many of these factors including 

eutrophication, global climate change, and invasive species, all of which will be covered 

in more detail throughout. By analyzing the relationship between a type of mass-

occurring cyanobacteria and an invasive species of copepod, this study has multiple 

ecological and environmental implications. 

Aquatic ecosystems: 

 Aquatic ecosystems play an essential role in many crucial environmental 

functions such as nutrient recycling, water purification, attenuating floods, recharging 

vital groundwater, and providing habitats for wildlife. In addition to being vital 

contributors to biodiversity and ecological productivity, aquatic systems provide for a 

plethora of recreational uses and a stimulation of the tourism industry in many coastal 

regions. As mentioned before, global climate changes can alter many factors within an 

aquatic ecosystem, the biggest contributor being temperature change and its associated 

effects. It is essential to study and understand aquatic ecosystems on a small scale as well 

as a global scale, especially with the recent attention given to global climate changes.  

The recent changes in global climate, with regards to temperature in particular, 

have been shown to affect physical and biological processes that regulate energy flow 

among trophic levels differently, making ecosystems’ responses to climate change 

difficult to forecast (Walther et al., 2002; Winder & Schindler, 2004). Given these 

difficulties, it is imperative that we use smaller scale investigations and scientific 

experimentation to gain a better understanding of the effects of aquatic ecosystems and 

how they respond. A better understanding of the interactions between the biotic and 
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abiotic factors within an aquatic ecosystem and their response to global climate change 

will aid in predicting the future ramifications of such events. 

Aquatic systems, mainly lakes, have generally been classified based on 

productivity levels using a trophic state index, labeling the systems as oligotrophic, 

mesotrophic, or eutrophic (Carlson, 1977). Oligotrophic refers to a system with low 

primary productivity resulting in a low nutrient content. Mesotrophic systems are those 

with an intermediate level of productivity and nutrients. Finally, a eutrophic body of 

water has very high biological productivity due to excess nutrients and autotrophic 

productivity.  

Biotic and Abiotic Characteristics in Aquatic Ecosystems: 

 An aquatic ecosystem is comprised of biotic communities that are structured by 

biological interactions and abiotic environmental factors, including temperature increases 

induced by global climate change. It is important to keep in mind that these two types of 

factors, living and non-living, are far from independent from one another. Therefore, the 

regulation of existing communities is controlled by both biotic and abiotic factors 

(Andrewartha and Birch 1954; Power et al., 1988; Jackson et al., 2001).  

Various abiotic factors of importance to an aquatic community include 

temperature, amount of sunlight, substrate type, water depth, nutrient levels (especially 

nitrogen, phosphorous, & carbon), pH, water flow & mixing (Loeb, 1994; Keddy, 2010). 

The amount of dissolved oxygen is of high importance, providing the possibility of life 

beyond the primary producers in an aquatic setting. While the negative effects of hypoxia 

(low levels of oxygen) are quite obvious, hyperoxia (too much oxygen) within an aquatic 

environment can result in harmful effects as well, such as changes in respiration rates and 
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nutrient composition (Burnett, 1997; Nikinmaa, 2002; Olsvik et al., 2006). Nutrient 

levels, with special regard to total nitrogen (N) and phosphorous (P) ratios, are also of 

high importance in an aquatic community. Nutrient levels are especially important in 

regulating and controlling the abundance and diversity of many species of phytoplankton 

as well as the eutrophication process (Smith et al., 1999; Conley et al., 2009). The 

phytoplankton community assemblage and species abundance are vital components of 

any aquatic ecosystem since the phytoplankton are the primary producers and form the 

base and foundation of the food web. Hebert (2008) stated that N is a crucial nutrient in 

determining a lake’s trophic status while P is one of the most common growth-limiting 

elements for phytoplankton. The existence of phytoplankton within an aquatic ecosystem 

is crucial, but over-abundance can cause declines in fish populations and hypoxic 

conditions leading to “dead zones” (Vallentyne, 1974; Turner & Rabalais, 2003). 

Temperature is another abiotic factor that can have a large impact on an aquatic 

ecosystem. Temperature can cause many alterations involving organisms’ metabolic 

rates, nutrient availability/solubility, and even the toxicity of various chemicals (Cairns et 

al., 1975; Regier et al., 1990). 

 The biotic characteristics of an aquatic ecosystem are determined by the 

organisms that inhabit or occur there. These organisms include many kinds of bacteria, 

plants, phytoplankton, zooplankton, insects, and fish. Together these organisms make up 

the food web and play an important role in nutrient and resource cycling (Lindeman, 

1942; DeAngelis et al., 1989). Out of this large range of organisms that exist in aquatic 

habitats, each one has unique adaptations, metabolic and physiological needs, diets, 

habitat preferences, etc. These characteristics that are unique to each organism have 
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evolved, and are constantly evolving in an attempt to reach optimal functionality within 

the given environment.  

All of the organisms that inhabit aquatic systems can be placed into a category of 

autotrophic or heterotrophic. Autotrophs are the primary producers that generate biomass 

from the sun and carbon dioxide (CO2). Heterotrophs on the other hand, are organisms 

that rely on other organisms as sources of energy, mainly through direct consumption. 

Therefore, in aquatic ecosystems, there is a high degree of interdependence between all 

of its inhabiting life forms. Other biotic characteristics of interest include competition, 

mutualism, co-existence, and predation among the ecosystems’ inhabitants. The 

independent functions as well as dependent interactions of the abiotic and biotic factors 

are of great interest to aquatic researchers all over the world. Understanding more about 

these factors and their responses/effects within aquatic ecosystems will aid in providing 

researchers with predictive and regulatory power. This deeper level of understanding and 

predictive power will then allow for the control and management of the negative impacts 

to aquatic systems. The vital importance of these factors is undeniable. However, due to 

the presence of complicated feedback loops, the peculiarity of water as a growth medium, 

and the variation in responses by aquatic organisms and communities, studying the 

specific effects of these factors and generalizing them can be challenging (Kononen, 

2001; Anderson et al., 2002; Keddy 2010).  

Climate change: Impacts on Aquatic Ecosystems: 

 Climate change is currently causing significant alterations in physical, chemical, 

and biological aspects of aquatic systems all around the world. In particular, aspects that 

may be affected include biogeochemical processes, carbon dynamics, food web structure, 
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biodiversity, primary and secondary production, as well as changes in organism range, 

distribution, and habitat quality/quantity (Wrona et al., 2006). Although the effects of 

global warming on the chemical and physical properties of lakes have been documented, 

biotic and ecosystem-scale responses to climate change have been only estimated or 

predicted by manipulations and models (O’Reilly et al., 2003). A meta-analysis of the 

effects of climate change by Daufrense et al. (2009) suggests that there are three 

universal ecological responses to global warming within aquatic ecosystems. These 

responses consist of: (1) an increase in the proportion of small-sized species and young 

age classes; (2) a shift in species ranges towards higher altitudes and latitiudes; (3) 

seasonal shifts in the life cycle events of aquatic organisms. Wrona and colleagues (2006) 

also pointed out that while the effects of global climate change are of extreme 

importance, estimating and generalizing the specific effects can be difficult given that the 

magnitude, extent, and duration of the impacts and responses will vary and be both 

system- and location-dependent. 

 Poff et al. (2002) provide a very informative and in-depth assessment of the 

impacts of global climate change on aquatic ecosystems. The summary of their work 

highlights some main points of their extensive study. They stated that aquatic and 

wetland ecosystems are extremely vulnerable to climate change and the effects can be 

more substantial than in a terrestrial setting. The metabolic rates of organisms and the 

overall productivity, distribution, and diversity of these ecosystems are directly regulated 

by temperature and climate. Temperature increases will also cause a shift in the thermal 

suitability of aquatic habitats for native, non-native, and novel species. Changes in 

precipitation and runoff can modify the quality of the habitat and may cause significant 
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negative effects on these ecosystems (nutrient or pollutant loading). Overall, these 

conclusions made by Poff and colleagues (2002) indicate climate change as a significant 

threat to the species composition and the functionality of aquatic ecosystems around the 

world.  

There exist critical uncertainties in regards to the manner in which specific 

species and ecosystems as a whole will respond to climate change. These uncertainties 

arise both from how regional climate will change and how the complex ecological 

systems themselves will respond. Therefore, as climate change causes alterations in 

ecosystem productivity and species composition, there are many unforeseen ecological 

changes expected that may threaten the functionality of these ecosystems and the services 

they provide to humans. Finally, the manner in which humans adapt to a changing 

climate will greatly influence the future status of inland freshwater and coastal wetland 

ecosystems.   

 In many cases, changing composition in aquatic ecosystems and rising 

temperatures have been connected to the spread of invasive species by influencing the 

likelihood of new species becoming established. Establishment of invasives can be 

through the elimination of colder temperatures or winter hypoxia that prevent many non-

native species from surviving in certain habitats (Rahel & Olden, 2008). The introduction 

of these novel species will modify the ecological impacts of invasive species by 

enhancing their competitive and predatory effects on native species and disease virulence 

(Rahel & Olden, 2008). Overall, Rahel & Olden’s (2008) findings highlight the complex 

interactions that exist between climate change and invasive species that will influence 

how aquatic ecosystems and their biota will respond to novel environmental conditions. 
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 The increase in global temperature has also contributed to the growing problem of 

the occurrence of harmful algal blooms (HABs) and, in particular, cyanobacteria blooms 

(Paerl & Otten, 2013). These cyanobacteria blooms and their effects on aquatic 

ecosystems are a main focus of the study at hand and will be referred to repeatedly. The 

optimal growth conditions for cyanobacterial blooms include increased nutrients and 

temperatures, both of which result from the on-going climate changes (Paerl & Huisman, 

2008; Dionysiou, 2010; Paerl & Otten, 2013). The occurrences, conditions and effects of 

these HABs will be covered in more detail later in this study. 

Aquatic Ecosystems & Invasive Species: 

 Aquatic systems, like terrestrial systems, are susceptible to the effects of invasive 

organisms. According to the U.S. Fish and Wildlife service, aquatic invasive species 

(sometimes referred to as AIS, exotic, nonindigenous or non-native) are aquatic 

organisms that invade ecosystems beyond their natural, historic range. Humans, either 

intentionally or unintentionally, have assisted in the spread of invasive species around the 

globe. Intentional introductions consist of a deliberate transfer possibly for biological 

control methods (various insects are introduced to control invasive plants), fish stocking, 

or for other reasons. On the other hand, unintentional introductions are accidental in 

nature. Examples of how invasive species can be spread in aquatic ecosystems include by 

ships (ballast water), boats (hull fouling), aquaculture, aquatic recreation, and connected 

waterways, just to name a few. As humans have facilitated the dispersal of plants and 

animals in aquatic ecosystems by breaking down various barriers, invasive alien species 

have increasingly altered the composition and functioning of such ecosystems (Dukes & 

Mooney, 2004).   
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The presence of invasive species can have many impacts on an ecosystem 

including causing harm to native ecosystems and organisms. These impacts then affect 

commercial, agricultural, and recreational activities that are dependent on these 

ecosystems. Due to these possible negative implications, invasive species are one of the 

largest threats to aquatic ecosystems. According to the Environmental Protection Agency, 

invasive species represent the second leading cause of species extinction and loss of 

biodiversity in aquatic ecosystems worldwide. Loss of biodiversity and extinctions are 

often a result of high levels of predation (by the invasive species) or by means of 

competition where the newly introduced invasive species out-compete the native species. 

McCormick and colleagues (2010) state that the physical and biological disruptions of 

aquatic ecosystems caused by invasive species can alter water quantity and water quality 

through multiple mechanisms, including alterations in nutrient cycling and the food web. 

Chandra and Gerhardt (2008) point out that the spread and establishment of invasive 

species are occurring at an accelerated rate and that their introductions are of increasing 

global concern. Ecologists have recognized for some time that these biological invasions, 

besides the previously mentioned ramifications, affect various levels of ecological 

organization and structure (Elton, 1958). It is important to note that though these negative 

impacts mentioned apply to most species of invasives, their effects on ecosystems are 

variable and not every introduction will inevitably lead to profound negative impacts. 

Given the range of potential environmental impacts researchers now recognize biological 

invasions as an important element of global change (Dukes & Mooney, 1999). Some 

examples of various invaders in aquatic ecosystems include zebra mussels (Dreissena 

polymorpha), Eurasian Watermilfoil (Myriophyllum spicatum), sea lamprey (Petromyzon 
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marinus), Asian carp (many species of heavy-bodied cyprinid fish), and various types of 

snails, zooplankton, and phytoplankton. 

Bottom-Up and Top-Down Controls: 

 Populations within an ecosystem have the ability to be controlled or regulated by 

various factors. There are two general mechanisms that contribute to this control and they 

are referred to as top-down and bottom-up controls. In aquatic ecosystems these control 

mechanisms are most studied in terms of their effects on phytoplankton and zooplankton. 

Bottom-up control concerns the factors that affect growth including light, temperature, 

and nutrients. The effects of bottom up control work from the bottom of the food web to 

the top, hence the name. On the other hand, top-down controls refer to elements including 

predation and defensive mechanisms and therefore work from the top of the food web to 

the bottom. It is important to keep in mind that these regulatory mechanisms related to 

the food web vary in time and space and there are many complex interacting components 

that go into each.  

  These two concepts have been the focus of numerous studies concerned with 

investigating food web dynamics and community structure. It has been demonstrated that 

grazers can be very effective in removing prey biomass and heavily influencing community 

structure (Feminella and Hawkins 1995,Steinman 1996).  However, bottom-up factors 

including light and nutrient supply can also have effects on various aspects including algal 

biomass, nutrient composition (type and concentration), productivity, and species 

composition (Rosemond et al., 1993; Hill et al. 1995; Francoeur 2001; Hillebrand, 2002). It is 

very important to the proper analysis of these two mechanisms to realize that they are not 

mutually exclusive and that a strict and distinct separation of the effects on communities is 

unrealistic (Stewart 1987, Leibold et al. 1997). 

http://www.jstor.org/stable/1468475#i0887-3593-21-3-349-Feminella1
http://www.jstor.org/stable/1468475#i0887-3593-21-3-349-Steinman1
http://www.jstor.org/stable/1468475#i0887-3593-21-3-349-Rosemond1
http://www.jstor.org/stable/1468475#i0887-3593-21-3-349-Francoeur1
http://www.jstor.org/stable/1468475#i0887-3593-21-3-349-Stewart1
http://www.jstor.org/stable/1468475#i0887-3593-21-3-349-Leibold1
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Phytoplankton: The Foundation of Aquatic Ecosystems: 

 Phytoplankton play a vital role in any aquatic ecosystem by providing the 

autotrophic and photosynthetic foundation to such an environment. Phytoplankton are 

labeled as the primary producers within aquatic systems, synthesizing organic 

compounds from carbon dioxide dissolved in water and energy from the sun. Being the 

primary producers in aquatic ecosystems, phytoplankton are also the primary food source 

and form the base of the aquatic food web and nutrient cycling pattern. Therefore, 

phytoplankton effects are distributed throughout the aquatic food web within their given 

ecosystem (White, 1981; Carpenter et al., 1987; Turner and Tester, 1997; Engström-Öst, 

2002).  

Phytoplankton productivity is reliant on adequate nutrient supplies, especially 

nitrates and phosphates. However, the rapidly increasing rates of nutrient supply, much of 

which is through manmade processes, fuels accelerating primary production or 

eutrophication (Paerl et al., 2001). One ramification of eutrophication can be formation 

of HABs or great increases in the amount of phytoplankton in a water body as a response 

to increased levels of nutrients (Anderson, 2002). That study explains that the negative 

environmental effects of eutrophication include hypoxia, the depletion of oxygen in the 

water, which causes a reduction in specific fish and other animals. Water movement and 

the movement of various physical factors allows for the existence of microhabitats and 

the coexistence of many populations of phytoplankton within a small area. Such physical 

factors affecting the community composition of phytoplankton (coexistence) may include 

http://en.wikipedia.org/wiki/Phytoplankton
http://en.wikipedia.org/wiki/Hypoxia_(environmental)
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nutrient inflows, water mixing and upwelling, convergence or divergence, changes in 

stratification, or vertical migration (Kononen, 2001).  

Included in the classification of phytoplankton are some types of bacteria and 

protists. However, the majority of phytoplankton are single-celled plants. Among the 

common kinds are cyanobacteria, diatoms, dinoflagellates, green algae, and 

coccolithophores. There is a relatively high level of competition between co-existing 

phytoplankton in an aquatic community. This competition is mainly dependent on the 

nutrient availability and the phytoplankton’s efficiency of nutrient intake, both of which 

vary on a temporal scale (Sakshaug & Olsen, 1986; Egge & Aksnes, 1992; Litchman et 

al., 2004). Therefore, all of these types of phytoplankton have their own unique qualities, 

traits, adaptations, and habitat preferences.  

Cyanobacteria as a Food Source: 

Cyanobacteria are a plentiful, diverse, and common type of phytoplankton found 

generally in the pelagic community. Due to the cyanobacteria’s blue-green pigment 

(phycocyanin), they were formerly classified as blue-green algae and belong to a specific 

phylum of bacteria (Mclean & Sinclair, 2013). Cyanobacteria are typically characterized 

as a low quality food source for its consumers. The low food quality has mainly been 

associated with the cyanobacteria’s difficult-to-handle morphology, low nutritional 

quality, and toxin content (Porter and Orcutt, 1980; Lampert, 1987; Kirk & Gilbert, 

1992). These toxins have been classified in five broad categories that include more than 

200 specific forms (Boyer & Dyble, 2008). Boyer & Dyble (2008) demonstrated that one 

of the most common types of toxins produced are cyclic hepatotoxins (peptides). 

Examples include microcystin which is named after its producer, Microcystis, as well as 
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nodularin which is produced by Nodularia (Brittain et al. 2000), a close relative of 

Microcystis. These toxins have been shown to be harmful and affect zooplankton 

diversity, grazing, and mortality (Koski et al., 1999; Enström-Öst 2002; Engström-Öst et 

al., 2002). These effects can accumulate in the food web via bioaccumulation and 

negatively impact higher trophic levels as well (Kotak et al., 1996; Magalhaes et al., 

2003; Xie et al., 2005; Hansson et al., 2007; Karjalainen et al., 2007). Toxins like 

microcystin have been shown to inhibit protein phosphatases and are therefore dangerous 

to other living organisms (Kozlowsky-Suzuki et al. 2003). There is a plethora of possible 

negative effects stemming from these toxins.  It should be kept in mind that if a strain of 

phytoplankton is classified as a cyanobacterium or even as Microcystis, this does not 

necessarily mean that it produces toxins (there exist non-toxic strains as well).  

Besides using toxin as a defense, some cyanobacteria have evolved the ability to 

have a filamentous or colonial morphology, forming aggregates and making them less 

appealing as a food source due to mechanical difficulties with feeding (Webster & Peters, 

1978). As mentioned previously, cyanobacteria have been classified as a low quality food 

source. This lack of nutritional quality seems to be linked to the cyanobacteria lacking 

essential compounds such as polyunsaturated fatty acids (Holm & Shapiro, 1984; 

Demott, 1986; Muller-Navarra et al., 2000). Studying these techniques to avoid 

predation, their effects, as well as their evolution through time is difficult and is the main 

focus of many ongoing biological and chemical studies. 

Despite the known negative effects of cyanobacteria, there exists some evidence 

that these phytoplankton can have some positive effects on an aquatic community as a 

whole (Engström-Öst, 2002). For one, cyanobacteria have the ability to turn light energy 
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into useable biological energy through photosynthesis that can then be transferred 

throughout the food web. Some types of cyanobacteria are nitrogen fixers, which can 

have a positive impact on nutrient cycling and dynamics (Mitsui et al. 1986; Kivi et al., 

1993). Cyanobacteria can also provide a food source for specialized consumers and 

therefore allow the specialist to be successful in a community dominated by 

cyanobacteria (Meyer-Harms et al., 1999). Compared to the actively growing 

cyanobacteria, the decomposition of this type of phytoplankton (eventually degrading 

into recycled detritus) may provide a better food source to consumers. This is due to the 

decrease in toxins during senescence and the attached bacteria associated with the 

decomposition providing additional nutrients (Repka et al., 1998; Kankaanpaa et al., 

2001).  Therefore, it seems as though the overall effects of cyanobacteria (positive or 

negative) may depend on various environmental factors and/or details of the community 

assemblage (phytoplankton and consumers) and are likely to vary by individual 

organisms, species, and ecosystems. 

Good Food Sources and Selective Feeding: 

There are numerous interactions and levels of co-dependence between the 

phytoplankton and zooplankton populations within any aquatic ecosystem. The means by 

which food quality is typically determined is by providing zooplankton with different 

types of phytoplankton and analyzing the effects on the organisms’ survival, growth rate 

and reproductive rate. Herbivorous zooplankton production and success is constrained by 

the zooplankton’s ability to ingest and digest phytoplankton (Brett & Muller-Navarra, 

1997). There are various characteristics possessed by phytoplankton that are associated 

with a high quality source of food for zooplankton grazers. Cummins & Klug (1979) 

suggest that the natural growth patterns of most zooplankton involve the interaction of 
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temperature and food quality. Food quality for grazers has been related to mineral (C, N, 

P) and biochemical (amino acids, fatty acids) constituents (Ahlgren & Hyenstrand, 

2003). The lipid composition itself has been suggested as a probable factor determining 

the nutritional quality of the algae, with higher levels possessing more nutritional value 

(Ahlgren et al., 1990). Aquaculture studies provide some direct evidence of the 

importance of the long-chained polyunsaturated fatty acids (PUFA) for zooplankton. 

PUFAs are almost exclusively synthesized by plants and are essential for higher 

organisms (Brett & Muller-Navarra, 1997).  

Phosphorous, C:P ratios, the presence of PUFA and eicosapentaenoic acid (EPA) 

in phytoplankton are all reported to affect the growth rates of zooplankton significantly 

(Gulati & Demott, 1997; Breteler et al., 1999). Structural and morphological changes in 

P-limited cells most likely reduce their digestibility and may be a highly efficient strategy 

of P-limited algae to resist heavy grazing pressure (Van Donk & Hessen, 1993). Diatoms 

and flagellates are generally considered as high-quality foods because of their high EPA 

content. On the contrary, cyanobacteria are low-quality food, having both low EPA and P 

content. Brett & Muller-Navarra (1997) state that highly unsaturated fatty acids (HUFA), 

a subset of PUFA, have been found to be critical for maintaining high growth, survival, 

reproductive rates and high food conversion efficiencies for a wide variety of marine and 

freshwater organisms. HUFA may be key nutritional constituents of zooplankton diets, 

and may determine energetic efficiency across the plant–animal interface, secondary 

production and the strength of trophic coupling in aquatic pelagic food webs (Brett & 

Muller-Navarra, 1997). 

Harmful Algal Blooms: Conditions, Causes, Effects, and Management: 
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 It is important to understand the conditions that provide for the formation and 

maintenance of HABs within an aquatic ecosystem when trying to control and limit the 

negative effects of these blooms. The basis of the success of these blooms is based on 

out-competing other phytoplankton species co-existing in an environment. Numerous 

freshwater phytoplankton are capable of forming blooms; however, cyanobacteria are the 

most notorious bloom formers. This is especially true for harmful toxic, surface-dwelling, 

scum-forming species (e.g., Anabaena, Aphanizomenon, Nodularia, Microcystis) and 

some subsurface species (Cylindrospermopsis, Oscillatoria) that are efficient at 

exploiting nutrient-enriched conditions (Paerl et al., 2001). Many harmful species are 

tolerant of extreme environmental conditions, including very high light levels (UV), high 

temperatures, various degrees of desiccation, periodic nutrient deprivation and overload 

(Paul, 2008). Blooms are a prime agent of water quality deterioration, including foul 

odors and tastes, deoxygenation of bottom waters (hypoxia and anoxia), toxicity, fish 

kills, and food web alterations.  

The physiological strategies by which different groups of species obtain their 

nutrients have been better understood recently, and alternate modes of nutrition such as 

heterotrophy and mixotrophy are now recognized as occurring substantially among HAB 

species (Anderson et al., 2002). Some of the most noxious cyanobacterial bloom genera 

(e.g., Anabaena, Aphanizomenon, Cylindrospermopsis, Nodularia) are able to fix 

atmospheric nitrogen (N2) to fulfill their N-related needs. This ability makes it possible 

for these cyanobacteria to out-compete other species of phytoplankton and periodically 

dominate under nitrogen-limited conditions (Paerl et al., 2001).  
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Blooms can be attributed to two primary factors: natural processes such as 

circulation, upwelling relaxation (decrease in water movement) and river flow; and 

anthropogenic loadings leading to eutrophication (Sellner et al., 2003). Eutrophication 

and increases in the nutrient load are mechanisms by which harmful algae appear to be 

increasing in extent and duration in many locations. In waters susceptible to blooms, 

human activities in water- and airsheds have been associated with the extent and 

magnitudes of the blooms. Nutrient enrichment has been strongly linked to stimulation of 

some harmful species, but for others it has not been an apparent contributing factor 

(Anderson et al., 2002). This shows that similar nutrient loads do not have the same 

impact in different environments or in the same environment at different points in time. 

The overall effect of nutrient over-enrichment on harmful algal species is clearly species-

specific. The types and amount of nutrient input constraints depend on hydrologic, 

climatic, geographic, and geologic factors, which interact with anthropogenic and natural 

nutrient input regimes. Recall that temperature can also play an important role in the 

promotion of HABs since increases in temperature tend to lead to higher nutrient levels, 

more effective toxins, strengthening of vertical stratification (lowering mixing), and 

longer optimal growth periods (Paerl & Huisman, 2008). In general the study by Paerl & 

Huisman points out that cyanobacteria grow better at higher temperatures (often above 

25°) than do other species of diatoms and green algae. Low CO2 availability, high pH, 

and low grazing rates may also contribute to the increased growth of cyanobacteria in 

HABs (Lehman et al., 2008). 

The degraded water quality from increased nutrient pollution by humans can 

promote the development and persistence of many HABs. These effects are dependent on 
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the composition, not just the total quantity, of the nutrient pool (Heisler et al., 2008). The 

sources of nutrients potentially stimulating algal blooms include sewage, atmospheric 

deposition, groundwater flow, as well as agricultural and aquaculture runoff and 

discharge (Anderson et al., 2002).  These authors also stated that the increases in nutrient 

loading from these sources typically leads to, as mentioned previously, anoxia and even 

toxic or harmful impacts on fisheries resources, ecosystems, and human health and 

recreation. Many of the regions affected by cyanobacterial blooms have witnessed 

reductions in phytoplankton biomass (as Chlorophyll a) or HAB incidence when nutrient 

controls were put in place. Shifts in species and community composition have often been 

attributed to alterations in the nutrient supply ratios, primarily N:P or N:Silica. Recently, 

important factors have been expanded to include organic forms of nutrients, and that an 

increase in the dissolved organic carbon to dissolved organic nitrogen ratio (DOC:DON) 

has been observed during periods of HABs (Anderson et al., 2002).  

Boyer and Dyble (2008) provided an extensive analysis of the effects that various 

environmental (chemical and physical) factors have on HABs gathered from other studies 

(primarily from Paerl, 1996). Some of these factors outlined by these researchers may be 

viable controls or regulatory mechanisms for HABs. The introduction of new water, 

flushing of water, and shortening water residence time can all serve as removal 

mechanisms for blooms. Vertical mixing (usually on a large-scale) can disrupt near 

surface accumulations of buoyant bloom populations. Shading might serve as a means of 

altering the phytoplankton community composition and negatively affecting 

cyanbacterial surface bloom taxa. Since temperatures in excess of 20°C (or increases in 

overall temperature), stratification and high nutrient loading can promote blooms, 
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avoiding these circumstances would be ideal. Modifications in pH levels can alter 

community composition as well; low pH (under 6) has been shown to favor eukaryotes 

while high pH (above 8) favors cyanobacteria. Nutrient (N and P) input reductions (long-

term) are frequently effective in reducing cyanobacteria algal bloom potentials. In 

particular, P levels should be the center of attention for regulation since low N:P ratios 

(<20), often caused by excessive P, can increase bloom prevalence. Restricted availability 

of iron may also promote cyanobacteria (and HAB) growth since cyanobacteria are able 

to compete effectively for low levels of iron compared to other species of phytoplankton. 

Salinity in excess of a few percentages can be an effective barrier to development and 

persistence of some cyanobacteria species  

Management of these HABs and their negative impacts is an important topic to 

environmental groups around the world and the Environmental Protection Agency is the 

main advocate in the United States. Some control mechanisms have been previously 

mentioned in the preceding paragraphs with regards to the summarization of the findings 

of Paerl, 1996 (from Boyle and Dyble, 2008). Recently emerging and newly developed 

tools and techniques are improving the detection and onset of HABs and their toxins. 

Researchers are rapidly advancing toward being able to have strong predictive power 

when it comes to the formation of HABs. Experimental studies are crucial to further the 

knowledge and understanding about the role various factors (especially nutrients) play in 

HABs expression (Heisler et al. 2008).  

Overall, the main avenue for the control and management of cyanobacterial and 

other phytoplankton blooms includes nutrient input constraints, most often focused on 

nitrogen (N) and/or phosphorus (P). Single nutrient input constraints have been shown to 
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be effective in some water bodies, but it is the dual N and P input reductions that are 

usually required for effective long-term control and management of HABs. In some 

systems where hydrologic manipulations are possible, enhanced flushing and artificial 

mixing (in conjunction with nutrient input constraints) can be particularly effective 

alternatives (Paerl et al., 2001). 

Phytoplankton Used in This Study: The Green and the Blue-Green: 

 In this study two types of phytoplankton were used to investigate the effects that 

the toxin-producing cyanobacteria have on the feeding and reproduction ecology of a 

particular species of invasive calanoid copepod. The “good” food source, known to be 

nutritionally adequate, is a type of green algae named Scenedesmus quadricauda 

(Ahlgren et al., 1990). The toxin-producing cyanobacteria species under investigation is 

Microcystis aeruginosa and the name of the toxin it produces is microcystin, a cyclic 

hepatopeptide toxin (Brittian et al., 2000) (Figure 2). The general qualities and 

characteristics of cyanobacteria covered previously are applicable to the species 

Microcystis aeruginosa. The use of Scenedesmus and Microcystis together as contrasting 

food sources has been employed in a variety of other studies (Bringmann & Kuhn, 1978; 

Lampert, 1981; Hairston et al., 1999; Kuwata & Miyazaki, 2000 Lurling, 2003; Dwyer, 

2013). 

Microcystis aeruginosa is a non-nitogen fixing colonial cyanobacteria species and 

the toxin that it produces has been the focus of many studies investigating the effects of 

toxins on aquatic ecosystems (Kozlowsky-Suzuki et al., 2003; Juhel et al., 2006; Jang et 

al., 2007; Karjalainen et al., 2007). Microcystis aeruginosa is characterized by small cells 

that are only a few micrometers in diameter and lack individual sheaths (Figure 1). 
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Microcystis has also been known to form cellular aggregations which, in conjunction 

with the toxins, can also act as a defensive mechanism impairing ingestion by 

zooplankton (Shen et al., 2011; Wang et al., 2011).  

 

 

 

 

 

 

 

Various factors affecting the growth rate of M. aeruginosa have been well 

documented (Zehnder & Gorham, 1960). The specific effects of nitrogen, phosphorous, 

ammonia, trace metals, light, pH and temperature have all been investigated (Van der 

Westhuizen & Eloff, 1983; Lukac & Aegerter, 1993; Bury et al., 1995; Long et al., 2001; 

Downing et al., 2005). Biotic and abiotic factors previously discussed in the 

cyanobacteria and HAB sections apply also to the species of interest, Microcystis 

aeruginosa. Van der Westhuizen & Eloff (1983) propose that a pH of 9 is the optimal 

level for growth of M. aeruginosa. In most cases, many of these biotic and abiotic factors 

can also influence the toxicity of the M. aeruginosa cell.  

The toxin produced by Microcystis is appropriately named microcystin (Figure 2). 

Once again, this particular strain of cyanobacteria is known to produce harmful algal 

blooms which are a topic of interest in this study (Wilson et al., 2005). Besides by means 

of direct ingestion, the microcystin toxin has a hydrophobic component, a specific amino 

Figure 1-Microcystis aeruginosa.  

Source: www.recetox.muni.cz 

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&docid=JuHzeS2SqW9QZM&tbnid=I2NDSsJI0nhxGM:&ved=0CAQQjB0&url=http%3A%2F%2Fwww.recetox.muni.cz%2Findex-en.php%3Fpg%3Dresearch-and-development--facilities&ei=zStoU7PRB5W0yASJqYHgDA&psig=AFQjCNFwIOOqLsGvxgD5WVmelXguF3dfjg&ust=1399422254287155
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group that can provide additional mechanisms for transfer throughout an ecosystem by 

physically attaching itself to another surface, like another organism (Harada, 1996; Yuan 

and Carmichael, 2004). Microcystis has also been shown to have the ability to regulate 

buoyancy via gas vesicles, allowing for movement of the cell as well as its toxins 

throughout the water column (Thomas & Walsby, 1985). The same study also provided 

evidence that the formation and regulation of these gas vesicles seems to be dependent on 

various environmental factors including light, temperature, and nutrient availability. 

Reynolds et al. (1981) gives an informative review of the annual cycle exhibited by 

Microcystis aeruginosa.  

 

 

 

 

 

 

Scenedesmus, which is one of the most common freshwater genera, exhibits 

extremely diverse morphologies among species. This makes them a difficult group to 

understand and identify (Lurling & Beekman, 1999). Species of Scenedesmus are of the 

class Chlorophyceae and are colonial and non-motile. In general, the morphology of S. 

quadricauda can be explained as an elongated oval (Figure 3). It has been documented 

that many species of Scenedesmus, including quadricauda, have defenses that include 

colony and spine formation and are likely induced by the presence of grazing predators, 

light availability and temperature (Lurling & Van Donk, 2000; Mayeli et al., 2005). The 

Fig. 2- Structure of microcystin –LR 

produced by Microcystis aeruginosa 

(according to J. Nawrocki et al., 2000). 
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importance of ionic metals like iron, copper and zinc on the growth and development of 

S. quadricauda have been suggested and documented (Peterson, 1982). Phosphates and 

ammonium have also been shown to be important factors influencing growth rates and 

nutrient intake abilities of Scenedesmus species (Rhee, 1973; Kuwata & Miyazaki, 2000). 

It has been suggested through experimentation that the growth rate of S. quadricauda has 

an optimal pH of 6.5 (Ostilrlind, 1950). 

 

 

 

 

 

Zooplankton: 

 Zooplankton are a morphologically and taxonomically diverse group of aquatic 

organisms. This categorization includes unicellular, colonial, and multicellular forms, 

protozoa, protists, invertebrates as well as vertebrates. Sizes of zooplankton span many 

orders of magnitude, from few-micron-sized flagellates to meter-sized gelatinous forms. 

Zooplankton are very important to overall ecosystem functioning and are responsible for 

transferring energy from the primary producers (phytoplankton) to the rest of the food 

web. Although most zooplankton species have an herbivorous diet, there are also many 

species that exhibit predatory behavior and feed on other small zooplankton. Zooplankton 

may be found in the open ocean (marine) habitats, lentic freshwater, as well as lotic 

waterways.  Zooplankton are primarily transported by ambient water currents, but many 

Figure 3- Scenedesmus quadricauda 

Source: CCALA- www2.butbn.cas.cz 

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&docid=vpj73GhArBeAEM&tbnid=VDPUpvKrnRLuLM:&ved=0CAQQjB0&url=http%3A%2F%2Fwww2.butbn.cas.cz%2Fccala%2Findex.php%3Fch1%3Dchecked%26ch2%3Dchecked%26ch3%3Dchecked%26genus%3DScenedesmus%2520quadricauda%2520(Turpin)%2520Br%25E9bisson%26bol5%3Db5ge%26bol1%3Db1a%26species%3D%26bol2%3Db2a%26strain%3D%26bol3%3Db3a%26locality%3D%26bol4%3Db4a%26page%3Dsr%26Search%3DOdeslat%2Bdotaz&ei=dS1oU6HjPMmayAT7_oCADQ&psig=AFQjCNFRfMSWPoBwBgmFXl4YK_vnOyuNGA&ust=1399422656829773
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have the ability of self-induced locomotion (diel vertical migration) that can be used to 

avoid predators and or increase prey encounter rate (Folt & Burns, 1999; Saiz, 2009).  

Despite being a very diverse group, all zooplankton are faced with the common 

problem of finding and capturing food in a dilute and usually viscous environment. There 

are two components to food acquisition: the first is to find or encounter the food, the 

second is capturing it. Kiorboe (2011) points out that one aspect of finding food includes 

behaviors that utilize a patchy distribution of food, which is a common form of food 

distribution in aquatic ecosystems. It is well documented that many zooplankters either 

migrate to the surface, which is where the phytoplankton is concentrated, or have motile 

behaviors that allow them to congregate in patches of food, essentially by modifying their 

motility in response to the ambient food concentration (McLaren, 1963; Tiselius, 1992; 

Fenchel & Blackburn, 1999). There are numerous strategies or mechanisms of feeding 

across the species of zooplankton. Kiorboe (2011) provides an overview of zooplankton 

feeding mechanisms and suggests that one can distinguish between four major feeding 

types in zooplankton: (1) passive ambush feeders that passively encounter and intercept 

prey due to the motility of the prey; (2) active ambush feeders that passively encounter 

(perceive) motile prey and capture these by active attacks; (3) feeders that generate a 

feeding current and retrieve prey either by directly intercepting it, by straining/filtering 

the prey out of the feeding current, or by perceiving and capturing individual prey that 

arrive in the feeding current; and (4) cruise feeders that move through the water and 

capture individual prey, typically after having perceived the prey remotely. Food 

quality/preference, clearance rate and ingestion rates are very important aspects of 



25 

 

zooplankton feeding and can differ between individuals and species (Vargas & Madin, 

2004). 

Besides competition, food availability and the ability to obtain the food 

(phytoplankton and small zooplankton) are the main factors affecting growth rates of 

zooplankton on both a community and individual scale (Huntley & Boyd, 1984). This 

same study also generally concluded that marine, herbivorous zooplankton are less likely 

to experience food-limited growth in coastal areas than in the open ocean. Temperature is 

also an important component directly related to zooplankton growth and food availability 

and its effects differ between organisms and ecosystems (McLaren, 1963; Vidal, 1980). 

Vidal (1980) suggests that the final body size of small species of copepods may be 

determined primarily by temperature, whereas final body size of large species may 

actually be more dependent on food concentration than on temperature. This study by 

Vidal also suggests that species of zooplankton seem to be geographically and vertically 

distributed in relation to body size and food availability in order to optimize growth rates 

at various stages of their life cycles. 

Food availability is not the only component affecting zooplankton community 

assemblage. Competition (for resources) and predation are critical regulatory components 

in zooplankton survival and community structure (Dodson, 1974; Lynch, 1977; DeMott, 

1989).  Resource competition is an indirect interaction, affecting the competitors via the 

exploitation of common food sources. DeMott (1989) states that in regards to competition 

within a community, there have been two broad alternatives considered. First, organisms 

constantly face food limitation and coexist via niche partitioning. In contrast, 

nonequilibrium models emphasize the role of changing conditions (environmental, 
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predatory, exploitative competition) in stabilizing species coexistence since a shift in 

conditions could likely cause shifts in competitive ability. In another case, Brooks and 

Dodson (1965) proposed a two-part hypothesis that incorporates zooplankton size, 

competition, predator presence, food size and food availability. The first part of this 

hypothesis was that size-selective predation by vertebrate predators (fish) can exclude 

large species of zooplankton from an aquatic ecosystem and leave only small species. 

The other part of this hypothesis deals with size-efficiency feeding which explains the 

absence of small species in associations of large species. The large species are thought to 

discourage the smaller species via competition for food by feeding in a more efficient 

manner and the ability to digest larger food sources. In another study, Rothhaupt (1990) 

suggests that the concepts of threshold food concentrations, of resource partitioning due 

to different feeding modes, and of the effects of resource variance are regarded to be the 

most promising approaches to understanding zooplankton competition.  

Study environment: Green Bay, Lake Michigan: 

 The Green Bay, Little Sturgeon Bay, and Lake Michigan freshwater environments 

are the aquatic ecosystems of interest in this study (Figure 4a & 4b). Much of the 

following information about the Green Bay water system comes from a report by 

Bertrand et al. (1976) and related articles. Green Bay is best characterized as an estuary 

since it functions as a nutrient trap, has exceptionally high biological productivity, and 

because of the thermal and chemical differences between the water of its tributaries and 

that of Lake Michigan. Green Bay is the largest freshwater estuary in the world. There 

exists a strong trophic gradient between lower and middle bay areas of Green Bay (De 

Stasio et al., 2008). An embayment protruding from the northwest edge of Lake 
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Michigan, it is orientated in a northeast-southwest orientation. The south end is located at 

44° 31’ N, and the north end is located at 45° 54’N. The length of this body of water is 

about 193 km, with an average width of 37 km and covers an area of 4120 square km. 

The complete watershed, which consists of one third of all land that drains into Lake 

Michigan, is about 40,000 square km. There are eleven rivers and streams that drain into 

Green Bay, the largest being the Fox River. The southern bay can be more than 7° C 

warmer than the northern bay, and 12° C warmer than deep lake water. The overall 

average depth of Green Bay is 20m, but on the southern end the average depth is much 

less than 10 m (2-3m on the extreme south end). As a result of this relatively shallow 

water depth, there is no persistent stratification in the lower bay region (Qualls et al., 

2007). The depth increases to the north of the bay and this greater depth prevents the 

entire water column from successfully mixing during the summer, allowing for 

stratification and a decrease in algal blooms compared to the southern region. The 

southern bay is also directly exposed to an increased flow of nutrients coming from the 

lower Fox River resulting in considerable bloom productivity throughout the summer 

months (Stoermer, 1978). Therefore, this southern region of the bay is classified as 

hyper-eutrophic, whereas the northern region is has more meso-oligotrophic qualities 

(Sager & Richman, 1991). 

Figure 4a- A map of Little 

Sturgeon Bay. The red dot 

indicates the approximate 

location of the dock where 

the E. affinis were sampled. 
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The overall abundance and composition of the phytoplankton species in Green 

Bay and Lake Michigan has changed a great deal in the last few decades. It is likely that 

this change can be contributed to multiple factors (and their interactions), including 

dynamic shifts in nutrient loading, increased temperatures, and the arrival of certain 

invasive species. The invasive species with the largest impact on the phytoplankton 

community is likely to be the zebra mussel (Dreissena polymorpha), which invaded this 

system in 1992 (Qualls et al., 2007). Related to the changes in phytoplankton abundance 

Figure 4b- A labeled satellite image of Green Bay and Lake Michigan. The red dot 

indicates approximate location of Little Sturgeon Bay. This is where the Eurytemora 

affinis used in this study were sampled. 
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and composition, this invasion caused a decrease in Chlorophyll a concentrations 

throughout the Green Bay system. Pre-invasion, this aquatic system was dominated by 

diatoms and had a few species of cyanobacteria in the fall (Sager & Richman, 1991). The 

cyanobacteria would usually increase in composition during the summer due to the 

increased temperatures leading to increased environmental suitability. The main species 

during this time consisted of Aphanizomenon, Oscillatoria, Anabaena, and Microcystis. 

Post-invasion, overall Chlorophyll a increased and phytoplankton biovolume was 

significantly higher following invasion in middle bay (De Stasio et al., 2008). Along with 

these increases in abundance, there was a significant shift to higher and more frequent 

dominance of the phytoplankton community involving cyanobacteria, especially 

Microcystis. The increased phytoplankton abundance during the post-invasion period is 

likely explained by selective filter feeding and increased nutrient recycling by the rapidly 

growing zebra mussel populations that experience high turbidity conditions in this highly 

productive embayment of Lake Michigan (Qualls et al., 2007; De Stasio et al., 2008). 

There has also been an observed decrease in the zooplankton abundance as well, which is 

likely resulting from more abundant but less nutritional food sources available 

(cyanobacteria). The decrease in zooplankton populations may also be due, in part, to 

increased rates of predation by fish (De Stasio et al., 2008). 

Study Organism: Eurytemora affinis: 

 Our study was interested in investigating the reproduction and feeding ecology of 

a copepod species that is invasive to the Great Lakes, Eurytemora affinis (Poppe, 1880) 

(Figure 5). This species is native to the Ponto-Caspian region, the North American 

Atlantic coast including the Gulf of Mexico, the North American Pacific coast, the 
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western European coast, and parts of Asia, generally in brackish and saltwater regions 

(Torke, 2001). Average body length for this species has been documented as 1.20-

1.26mm by a report by Czaika (1982). Eurytemora affinis has extended caudal rami, each 

with 5 caudal setae that are three times longer than their width. The long caudal rami 

combined with the presence of large metasomal wings on the females makes for 

relatively simple identification and sexing of this species (Kipp et al., 2013). With 

regards to its life cycle, which has been documented to reach adulthood in no more than a 

month at 25°C, this species passes through 6 naupliar stages and 5 copepodite stages 

before it is considered mature (Czaika 1982). The effects of temperature and salinity on 

Eurytemora reproduction and development are extensive and have been well documented 

(Devreker et al., 2004; Beyrend-Dur et al., 2009; Devreker et al., 2009).  

 

 

 

 

 

 

 

Eurytemora affinis was first documented in Lake Michigan by Robertson (1966). 

It is commonly found during late summer through fall but is typically difficult to find 

during the winter and spring months (Torke, 2001; Kipp et al., 2013). This implies that E. 

affinis has a late seasonal developmental pattern, and therefore becomes established later 

in the year. The introduction of E. affinis to North American freshwater systems follows a 

Figure 5- Eurytemora  affinis female 

carrying eggs. Note the presence of 

metasomal wings (blue arrow) and the long 

caudal setae (red arrow). 
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trend of multiple species increasing their ability to adapt to the large salinity gradient 

during the transition from marine or brackish waters (Lee & Bell, 1999). This versatility 

allows E. affinis to exist and be commonly found in coastal areas as well as estuaries and 

marshes. The ability for local adaptation has led to differentiation within the E. affinis 

populations over time. Before the year 2000, there was documentation of six divergent 

clades of this calanoid copepod, four in America, one in Europe, and one in Asia (Lee, 

2000). Winkler et al. (2008) conducted a population genetic analysis of sympatric 

invasive and non-invasive clades of E. affinis that provides more information on its 

evolution. It has been suggested that the ideal environment for E. affinis success and 

dominance is a brackish, coastal habitat within an oligotrophic system (McNaught et al., 

1980). 

Calanoid copepods, like E. affinis, have a unique, selective feeding strategy that 

can allow them to out-compete other co-existing zooplankton species (DeMott, 1986; 

Haney, 1987). Generally, calanoid copepods seem best adapted to utilizing large, 

colonizing cyanobacteria (Haney, 1987; Koski et al., 2002). Eurytemora affinis is a 

suspension feeder (in top of water column with cyanobacteria) and is considered 

relatively less selective when compared to other calanoid copepod genera (i.e. Acartia) 

(Jonsson & Tiselius, 1990; Gasparini & Castelt, 1997). The specific effects of 

cyanobacteria on the feeding of E. affinis have been shown to vary in different 

experiments (Dwyer, 2013). Some studies have shown increased feeding rates in the 

presence of cyanobacteria, like Nodularia (Koski et al., 2002). On the other hand, in the 

presence of cyanobacteria like Microcystis, these organisms have shown, in some cases, 

decreased feeding rates (Dwyer, 2013). Overall it appears that calanoid copepods in 
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general exhibit increased feeding (uptake) in high concentration of cyanabacteria as a 

way to compensate for the lower food quality of the cyanobacteria (Koski et al., 2002; 

Kozlowksky-Suzuki et al., 2003). The effects of the toxic, low-quality food source of 

cyanobacteria can also have implications that reach to reproduction and the development 

of offspring, possibly affecting fitness and evolution over time. Adverse effects could be 

decreased growth and maturation rates and a decrease in egg production and/or viability. 

Previous studies have shown that the number of eggs produced by E.affinis females did 

not differ between those exposed to the cyanobacteria and those that were not (Koski et 

al., 1999; Dwyer, 2013). Eurytemora affinis has the ability to produce diapausing 

(resting) eggs which could result in a hatching event of multiple evolutionary stages in 

one area within a good environmental condition (Lee & Frost, 2002). 

Significance and Importance of this Study: 

 Much research is still needed to understand the effects of the HABs that are 

occurring at higher rates around the world. To do so, researchers must continue analyzing 

work within a laboratory setting as well as in the field. It is important to understand these 

effects in order to manage the negative impacts of the blooms and make estimates and 

predictions about future occurrences. The occurrence of these blooms has recently 

become a regular part of the Green Bay, Lake Michigan ecosystem in a relatively short 

period of time. The management of these blooms is important to the entire Great Lakes 

system. Although the occurrence of HABs is unfortunate and affects a plethora of aquatic 

ecosystems, it does create an opportunity for important studies and research. Using a 

well-studied organism such as Eurytemora affinis to study the effects of HABs is also 

very important since much evolutionary, behavioral, and physiological knowledge about 
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E. affinis exists. However, there is a limited number of studies that investigate the effects 

on the fitness of E. affinis with regards to the evolutionary and habitat changes 

experienced by this organism. Fitness is a large component in ecological studies and 

provides for many intriguing evolutionary implications regarding the future existence of 

the respective organism and species. 

 The previous research suggesting that E. affinis can survive and successfully 

reproduce in an environment dominated by/consisting of cyanobacteria with low levels of 

nutrition (HABs) is an important discovery. It seems as though as long as there is a 

mixture of phytoplankton composition available for consumption, this species of calanoid 

copepod can survive with moderate levels of fitness. Another important feature is that E. 

affinis can continue to actively graze during a bloom and could help prevent an even 

larger bloom from forming and providing for a natural management mechanism. 

Eurytemra affinis has been shown to have decreased egg production when exposed to a 

toxic cyanobacterial food source (Koski et al., 1999; Karjalainen et al., 2007; Dwyer, 

2013). These studies stress the importance of studying and investing the long-term effects 

of exposing E. affinis to toxin producing (extracellular and intracellular) and lower 

nutritional value algae. In these cases, if the adults are able to survive, but their egg 

production is impaired, the cyanobacteria are still having a large negative impact (long-

term) on E. affninis despite the evidence for short-term success.  

 This study aims to investigate the effects of toxin producing cyanobacteria, with 

separate emphasis on intra- and extracellular toxins, on a particular E. affinis population 

in Green Bay, Lake Michigan. It is important to mention that this study utilizes 

preliminary experiments as well as focal experiments, which are made distinct in the 
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methods and results sections. This work will aid in increasing the knowledge of how the 

toxins and food availability are specifically interacting with the copepods and give a 

higher level of insight into their direct effect. By exposing the copepods to situations 

where there is an availability of both good and bad food sources, we can see how 

phytoplankton community composition can affect their feeding and ultimately their 

fitness (short and long-term implications). This study will also aim to analyze whether 

there is an effect of actively ingesting the cyanobacterial cells and/or whether exposure to 

extracellular toxins will have a similar effect or not. In particular, we examine 

survivorship, grazing rates (filtering and ingestion), and egg production by the E. affinis 

population from Green Bay, Lake Michigan. This will provide greater insight into the 

implications of the interactions between environmental factors, algal composition, and 

zooplankton feeding as well as provide for interesting analysis of the effects higher in the 

aquatic food web (i.e. higher level consumers such as fish). It is hypothesized that 

feeding and egg production will be negatively affected by the presence of the toxic 

cyanobacteria (Microcystis aeruginosa) and that these negative effects will be strongest 

when the cells themselves are offered as food (intra- and extracellular toxins) as opposed 

to the filtrate (extracellular toxin), which will produce intermediate impacts on E. affinis. 

MATERIALS AND METHODS 

Water acquisition: 

 For this experiment we used water collected directly from the sampling area, 

Little Sturgeon Bay. Using the water directly from the area of animal collection helps 

eliminate various confounding factors associated with using other sources of water (i.e. 

aged tap water, artificial pond water, etc.) in our experiment. The use of other types of 
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water for experimentation could provide for unfit or less suitable conditions for the 

copepods and therefore could affect our experimental data. Given the fact that the 

captured organisms are adapted to and live in this water, it seemed like a viable choice to 

use the Little Sturgeon Bay water throughout the experimental process. 

On 9/21/13, 20 L of Little Sturgeon Bay water was collected using a carboy. It 

was then necessary to filter all of the large particles and algae out of this collected sample 

to ensure that the only food available to the copepods is that of the added green algae and 

cyanobacteria (Scenedesmus quadricauda & Microcystis aeruginosa). This filtering of 

the Little Sturgeon Bay water was done by using a pump to double filter the water into 

another carboy. The first level of filtering involved a larger pore Whatman #1 qualitative 

paper filter (15cm diameter) to remove the larger particles. The second level of filtration 

was done using a Whatman GF/C filter paper to remove the smaller particles that passed 

through the first level of filtration. The resulting water after double filtration was referred 

to as Filtered Little Sturgeon Bay (FLSB) water. This water was stored at room 

temperature within the laboratory during the experiments (approximately 21
o 
C). 

Animal acquisition and sorting: 

 The copepods used in these experiments were also collected from Little Sturgeon 

Bay. Based on a study performed during summer of 2013 examining the spatial 

distribution of Eurytemora affinis within Little Sturgeon Bay, the municipal dock boat 

landing was where the highest density of these copepods was observed (A. Poli, N. 

Barrett, & B. DeStasio, unpublished). Therefore, we chose to carry out our animal 

collection by walking along the dock area using a zooplankton towing net. The 

zooplankton net used has an opening diameter of 0.5m and a mesh size of 250 
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micrometers. These net tows (animal collections) were performed twice and were done in 

the late Fall between 10/9/13 and 10/20/13. Tows were done at night after it was 

observed that there were higher densities of Eurytemora affinis within the water column 

(probably due to a diel vertical migration behavior). The animals collected were 

transferred to 6 liter buckets of Little Sturgeon Bay water, stored on ice, and transported 

back to the Lawrence University laboratory. The samples were kept in the aquarium room 

at a temperature of 17° C until they were sorted.  

 Sorting of these animals was performed as quickly after collection as possible, 

usually the next morning. Sorting consisted of identifying and capturing Eurytemora 

affinis individuals based on maturity level and sex (adult males and gravid females). 

Using a small pipette and dissecting microscope, animals were sorted based on the 

number of males and females needed. Typically, the individual copepods were kept in 

beakers with FLSB water and a good green algal food source until further use. Once 

beakers of strictly Eurytemora affinis adults were obtained, further sorting into the 

treatments was performed based on number of individuals needed in each replicate. 

Food Sources: Green Algae and Cyanobacteria: 

 The green alga Scenedesmus quadricauda, and the cyanobacterium Microcystis 

aeruginosa, are the food sources that were used throughout the experiments. The S. 

quadricauda was obtained from Carolina Biological Supply Company (Burlington, NC). 

The toxic M. aeruginosa used was strain number PCC7820. Both of the cultures used 

were initiated from a larger lab culture on 8/23/13 when nutrient media were added. The 

S. quadricauda received a Bristols solution (125ml/L of Bristols) to optimize growth, 

while the M. aeruginosa received Cyanobacteria BG-11 Freshwater Solution (C3061) 



37 

 

from Sigma (St. Louis, MO) at 20ml/L. The S. quadricauda culture was kept in direct 

sunlight near a window and was lightly bubbled. The M. aeruginosa was kept in 

moderate indirect sunlight and stirred gently on a shaker table. 

Preliminary Experiments:  

Survivorship in Varying Conductivities     

After observing high mortality in previously attempted experiments, various 

parameters of the treatment water were measured to find possible causes for the high 

mortality. Using a Hydro Lab D55 multisonde unit, conductivity (SpC) was found to be 

very high, especially in the treatments of cyanobacteria.  This high conductivity seemed 

to be caused by the BG-11 cyanobacterial growth medium, resulting in conductivity 

values that were more than double the values measured in the field. Previous studies have 

stressed the importance of salt concentrations on the survival of E. affinis, salinity being a 

main component of the conductivity level (Lee & Petersen, 2003). Survivorship 

experiments were performed to evaluate the effect that high conductivity may have on the 

survivorship of E.affinis. Three treatments were created with varying conductivities: aged 

aerated tap water (SpC= 275 microsiemens/cm), recommended concentration (20ml/L) of 

BG-11 growth medium (SpC=1320 microsiemens/cm), and half of the recommended 

solution of BG-11 growth medium (SpC=693 microsiemens/cm).  Twelve females were 

placed in each treatment, one per well in 12-well tissue culture plates at room 

temperature with 4.5ml of treatment water and no food added. Survivorship was 

measured twice a day for 5 days. The results prompted us to create a method of adding 

the correct amount of cyanobacterial toxins to the treatments without increasing the 

conductivity to a high degree by the addition of the BG-11 growth medium.  



38 

 

 

Water Conditioning 

Two different methods of conditioning the water with M. aeruginosa (and 

extracellular toxins) were performed in order to address the problems associated with 

high conductivity and E. affinis survivorship. First, two 5ml samples of the M. 

aeruginosa culture were filtered down on to GFC filter paper (2cm diameter). These filter 

papers including the M aeruginosa cells were placed in to 25ml beakers of FLSB water. 

A time course of toxin analysis was performed at times of 0, 24, and 48 hours. A sample 

of the filtered Microcystis culture, FLSB water, and Milli-Q water were used as positive 

and negative controls in this experiment. The concentrations of toxins were analyzed 

using the standard assay protocol and the Quantiplate Kit Microcystin ELISA from 

Envirologix (Portland, ME). 

The second technique used for conditioning the treatment water with M. 

aeruginosa toxins without adding the BG-11 growth medium involved centrifugation. A 

200ml sample of the M. aeruginosa culture was spun in a SORVAL centrifuge for 30 

min. at 3,000 rpm using an SS34 rotor. After centrifugation, the liquid was decanted and 

the remaining pellet of the cyanobacteria was resuspended in about 600 ml of FLSB 

water. Conductivity measured after resuspension was 385 microsiemens/cm. 5 ml 

samples were taken at 0, 24, and 48 hours. A sample of FLSB water was used as a 

negative control. Once again, the concentrations of toxins were analyzed using the 

standard assay protocol and the Quantiplate Kit Microcystin ELISA from Envirologix 

(Portland, ME).  
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Survivorship with Varying Levels of Microcystis 

 In order to help us determine what concentrations of M. aeruginosa (relative to 

the Scenedesmus) to use in the grazing and reproduction experiments, we conducted a 

survivorship experiment using varying levels of Microcystis. Microcystis was added at 

0%, 10%, 20%, and 30% of the total carbon supplied as S. quadricauda, which was held 

constant at 500 µgC/L.  Survivorship of animals was assessed by holding E. affinis in two 

12-well tissue culture plates for each food treatment concentration. The percent of 

individual E. affinis surviving in each treatment and replicate wells was recorded roughly 

every 24 hours for 5 days.  

Survivorship in Differing Temperatures 

 In order to help us determine appropriate laboratory conditions for the 

experimental organisms, we conducted an experiment involving female E.affinis with and 

without egg sacs held under two different environmental conditions. The conditions 

analyzed consisted of room temperature (21°C) and relatively indirect sunlight as well as 

a 15°C and dark condition. For each condition temperature we employed two 12-well 

culture plates, one containing 10 females with eggs sacs, and the other containing 10 

females without egg sacs. An adequate supply of S. quadricauda was added to each well 

at a concentration of 500 µgC/L. The percent alive was recorded roughly every 24 hours 

for 7 days. The data were assessed with regards to the temperature and lighting 

conditions alone as well as whether the female organisms were carrying egg sacs or not. 
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Focal Experiments: 

Grazing Experiments 

 The grazing experiments consisted of three different treatment conditions, one 

with only S. quadricauda as the food source (500 µgC/L), another with S. quadricauda 

and 10% M. aeruginosa (500 µgC/L & 50 µgC/L), and one with the good food source 

(500 ugC/L) and the filtrate from the same volume of M. aeruginosa added to the other 

treatment. The treatments will be referred to as GF (good food), GF/Cyan, and GF/ Filt 

respectively. To determine the amount of food that needed to be added, the cell density of 

the algal cultures was measured with a hemocytometer counting chamber and converted 

into µgC/L. The food and FLSB water were mixed in large 3L buckets and then dispersed 

throughout the treatment beakers to ensure adequate mixture and dispersal in to the 

beakers.  

There were three treatment conditions; each condition consisted of 3 replicate 

beakers, as well as corresponding controls, making for 18 total beakers (all in 250 ml 

beakers). The number of individuals (E. affinis females) added to each condition and 

replicate did not differ by more than 3 between individual beakers. There were 35 

individuals added to the GF beakers (12, 12, 11); 37 individuals added to the GF/Cyan 

beakers (13, 12, 12) and 41 individuals added to the GF/Filt beakers (14, 14, 13). The 

beakers were kept within a 15°C incubator with no light source and covered with a sheet 

of plastic to reduce evaporation. The organisms were allowed to acclimate to the 

experimental conditions for a period of 41 hours. During the grazing experiments 

survivorship was recorded and all three treatments had survival rates of at least 90%. The 
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experimental grazing period was about 22 hours for each treatment condition. At the end 

of the grazing experiment, all copepods were removed, counted, and preserved in 

Formalin. This process was done by gently filtering the beakers through a mesh cup 4 

times (128 um mesh net). Initial and final samples were taken using a pipette in order to 

assess cell densities (10ml), extracellular toxins (20ml), and total toxins (10ml).  

 In order to determine the filtering (ml/copepod/hr) and ingestion rates 

(µgC/copepod/hr), calculations were used that converted the number or density of cells 

present (taking into consideration the cell volumes) in the experimental and control 

beakers at the start and end of the grazing period. The calculations used were obtained 

from Frost (1972).  

Egg Production Experiments 

  

 The experimental food treatments (GF, GF/Cyan, GF/Filt) were made up in the 

same way as they were for the grazing experiment with the same concentrations of 

Scenedesmus and Microcystis. A total of 50 gravid female E. affinis were placed in 

beakers containing the three experimental food conditions. These individuals were 

allowed to acclimate to the food conditions for at least 40 hours. This acclimation period 

also allowed any of the 50 female E. affinis added to each condition that were carrying 

egg sacs to drop them before addition of male E. affinis. It was important that the females 

used in the reproduction experiment were not carrying eggs to ensure that the egg sacs 

produced during the experiment were actually produced within the treatment conditions. 

The animals in the egg production experiment were kept in a 15°C incubator in constant 

dark. 
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At the end of the acclimation period those females that were gravid and not 

carrying egg sacs were left in the experimental conditions while those still carrying egg 

sacs were isolated in separate beakers (containing the same treatment conditions). This 

experiment used only one large beaker for each treatment condition since each female 

could be treated as an individual replicate. A total of 15 females were added to a beaker 

of the GF treatment. In the GF/Cyan treatment 24 females were added to the beaker. 

Finally, 30 females were added to the GF/Filt treatment condition. To signal the start of 

the egg production experiments, males were placed in the beakers with the gravid 

females. A total of 5 males were placed in the GF condition, 8 males in the GF/Cyano 

treatment, and 9 males to the GF/Filt treatment beaker. The females that had not dropped 

their egg sacs previously were added to the beakers with the males after they had dropped 

their egg sacs, about 30 hours after the initial addition.  

Three days after the start of the reproduction experiment, females that were 

carrying egg sacs were placed in 35mm capped petri dishes with 5ml of treatment food 

condition water. The treatment water used was newly made to ensure appropriate food 

and filtrate concentrations. Those females that were not carrying eggs were left in the 

original egg production beakers along with the males. At the end of the egg production 

experiment a total of 10 females in the GF treatment, 7 in the GF/Cyano treatment, and 

18 in the GF/Filt treatment had successfully produced eggs and were used in analysis. 

Individual females were assessed for the number of eggs she was carrying and 

then were checked daily for the number of hatched nauplii. Once the eggs were hatched 

and the nauplii seen in the petri dish, the sample was preserved with Lugol’s solution for 

later analysis. Some of the females that produced egg sacs did not successfully produce 
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nauplii. If the sample began to decompose and the eggs were not viable to hatch, Lugol’s 

was added to the sample. There were 6 females in the GF treatment, 4 females in the 

Cyano treatment, and 5 in the GF/Filt treatment that had produced nauplii that were used 

for the nauplii measurements. Nauplii measurements were done using a microscope with 

a 20x occular lens and a 50x objective. A stage and eyepiece micrometer was used to 

determine the size of each nauplius. 

Statistical Analysis 

 In order to perform the correct statistical analysis of the results, test of normality 

were performed on the data. Using the PAST program it was determined that the data met 

the assumptions of normality and did not need to be transformed for statistical analysis. 

Analysis of variance (ANOVA) followed by multiple comparison two tailed T-tests were 

used to analyze the data with EXCEL and PAST programs. To assess the survivorship of 

individual organisms, a PetoPeto survivorship analysis was performed on the data. This 

test adjusted for the fact that survivorship data can only stay the same or decrease in 

value. Regressional analysis was also performed on a small subset of the data to 

investigate the degree of correlation present between variables. Both standard error and 

standard deviation values were used for analyzing the variance within the data set and 

represented graphically as error bars. 
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Figure 6- Survivorship of Eurytemora. affinis adults over time (hours) when exposed to environments with 

varying levels of conductivity (SpC or microsiemens/cm). 

RESULTS 

Preliminary Results:  Survivorship in Varying Conductivities 

There was a gradual decline in survivorship of E. affinis at increasing levels of 

conductivity (Figure 6).  By the end of the experiment it was assumed that survivorship 

was being heavily affected by starvation because no food was provided in this 

experiment. The biggest difference in survivorship was seen around the 36-48 hour range 

where the highest conductivity had the lowest survivorship and the lowest conductivity 

had the highest. At the 40 hour mark the treatment with the highest conductivity had a 

survivorship of about 32%, the middle conductivity treatment had survivorship of about 

42%, and the treatment with the lowest conductivity had a survivorship of about 75%. 

Although these absolute survivorship levels were different at specific time points, there 

was no overall statistically significant difference in survivorship rates between the three 

treatment conditions using a Peto & Peto survivorship analysis test (df= 2, Chi-square= 

2.01, p>.05). 
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Figure 7- Concentration of microcystin-LR (µg/L) over time following centrifugation and re-

suspension of Microcystis aeruginosa. The lake filtrate served as a control. Error bars represent 

+/- 1 standard error. 

Water Conditioning: Centrifugation Technique 

 

Of the two techniques attempted for conditioning the treatment water with M. 

aeruginosa (and it’s toxins) without increasing the conductivity of the water by adding 

the BG-11 growth medium, the technique involving centrifugation proved to be the most 

reliable and efficient. The results of the ELISA assay performed to analyze the level of 

extracellular microcystin present in the given sample indicated a rapid increase in 

microcystin levels over time (Figure 7). The FLSB water (negative control) had very low 

levels of microcystin present. Levels of microcystin present in the sample at 0, 24, and 48 

hr were much higher than that of the FLSB.  The water was therefore almost immediately 

conditioned with the extracellular toxins of M. aeruginosa upon resuspension. There was 

very little increase in the level of extracellular toxins present in the water at each 

successive time interval measured. An ANOVA indicated a statistically significant 

difference in the level of microcystin present between the samples (F (3,4) =569.36, 

p=0.00001). Using a two-tailed T-test, there was a significant difference between the 

level of microcystin in the FLSB control and the conditioned water at every time period. 

At the 0 hour mark p=0.013, at 24 hours p= 0.024, and at 48 hours p= 0.0034. There was 
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Figure 8- Survivorship of Eurytemora affinis adults over time (days) when exposed to environments 

comprised of various mixtures of Scenedesmus quadricauda and Microcystis aeruginosa. The error bars 

represent +/- 1 standard error. 

no significant difference in the levels of microcystin present between the 0, 24, or 48 

hour time periods (p>0.05). 

Survivorship with Varying Levels of Microcystis 

 The survivorship of E. affninis individuals varied with respect to the concentration 

of M. aeruginosa in the treatment (Figure 8). The treatments of 30% and 10% M. 

aeruginosa followed very similar trends throughout the experimental time frame. 

Initially, the treatments of 0% and 20% M. aeruginosa had relatively similar levels of 

survivorship, each lower than the other two treatments. It wasn’t until between the fourth 

and fifth sampling times that there was a large decrease in survivorship in the 20% M. 

aeruginosa treatment. The other three treatment concentrations followed similar patterns 

of slowly decreasing survivorship throughout the experiment.  

There was a significant difference between the 0% and 20% M. aeruginosa, with 

the 0% treatment having higher survivorship (Peto & Peto test; df= 2, Chi-square = 4.23, 

p<0.05). There was also a significant difference between the 0% and 30% M. aeruginosa, 



47 

 

with the 0% treatment having lower survivorship (Peto & Peto test; df= 2, Chi-square= 

5.31, p<0.05). Comparing the treatments with 10% and 20 % M. aeruginosa also 

produced a statistically significant difference in survivorship, with the 10% condition 

having higher survivorship (Peto & Peto test; df=2, Chi-square= 12.28, p<0.05). Finally, 

there was a significant difference between the 20% and 30% M aeruginosa treatments, 

with the condition containing 30% having a higher survivorship (Peto & Peto test; df=2, 

Chi-square= 13.80, p<0.05). Interestingly, the condition containing the most toxic M. 

aeruginosa (30%) had the highest survivorship over the experimental time period. 

Overall, there existed no clear trend in survivorship in relation to the level of M. 

aeruginosa added based on this experiment. 

Survivorship at Differing Temperatures 

 The results of the experiment regarding the survivorship of females with and 

without eggs at two different temperatures indicated a higher survivorship at lower 

temperature (Figure 9a, 9b & 9c). There seemed to be no clear trend in survivorship over 

the 7-day span with respect to whether the females were carrying egg sacs or not in each 

condition. The females without eggs in both conditions showed similar rates of reduction 

in survivorship over the experimental period. The females with eggs in the dark 15° C 

condition had the highest survivorship while the females with eggs in the light room 

temperature condition had the lowest survivorship. The females with egg sacs that were 

in the dark 15°C condition had significantly higher survivorship than the females with 

egg sacs in the light and room temperature condition (Peto & Peto; df=2, Chi-squared= 

11.91, p<.05). When only analyzed with respect to the condition, survivorship was 

significantly higher in the dark 15°C condition throughout the 7 days (Peto & Peto test; 

B) 

C) 
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df=2, Chi-square= 8.10, p<.05). 

 

A. 

 

B. 

 

C. 

 
Figure 9- Survivorship of female Eurytemora affinis adults over time (days) when exposed to room 

temperature (about 23°C) and 15°C environments. The room temperature condition also included 

daylight, while the 15°C environment was dark. The survivorship of females with eggs (A), without 

eggs (B), and the overall (combined) survivorship (C) was analyzed. 
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Filtering Rate 
ANOVA 

      

Source of 
Variation 

SS df MS F P-value F crit 

Between Groups 0.140378 2 0.070189 8.412893 0.018163 5.143253 

Within Groups 0.050058 6 0.008343    

       Total 0.190436 8         

 

Figure 10- Filtering Rate (ml/copepod/hr) of adult Eurytemora affinis when exposed to various treatments 

including different compositions of food available. GF is only Scenedesmus quadricauda, GF/Cyan is S. 

quadricauda and Microcystis aeruginosa, and GF/Filt is S.quadricauda and M. aeruginosa filtrate. 

Calculations used come from Frost, 1972. P-values shown with connecting bars corresponding to compared 

data sets. Error bars represent +/-1 standard error. 

Recall that the results from these preliminary studies aided in planning and 

carrying out the procedures in the focal experiments. 

Focal Results: 

Grazing Experiments 

 

 

 

 

 

Table 1- Summary of ANOVA results concerning the filtering rate data set. ANOVA was done using Microsoft 

Excel. 
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Figure 11- Ingestion rate (µgC/copepod/hr) of adult Eurytemora affinis when exposed to various treatments 

including different compositions of food available. GF is only Scenedesmus quadricauda, GF/Cyan is S. 

quadricauda and Microcystis aeruginosa, and GF/Filt is S.quadricauda and M. aeruginosa filtrate. Calculations 

used come from Frost, 1972. P-values shown with connecting bars corresponding to compared data sets. Error 

bars represent +/-1 standard error.  

The average filtering rate (ml/copepod/hr) exhibited by the E. affinis was the 

lowest in the GF/Filt treatment condition (Figure 10). The copepods exposed to the GF 

and GF/Cyan treatments had filtering rates that were comparable, around 0.5 

ml/copepod/hr, while the copepods in the GF/Filt treatment had a filtering rate of about 

0.25 ml/copepod/hr. The ANOVA results indicated a significant difference in filtering 

rate between the three treatment conditions (F(2,6)= 8.413, p=.018; Table 1). Two-tailed 

T-tests were then performed to analyze the degree of difference between the individual 

treatments. The GF and GF/Cyan treatments were not significantly different from each 

other in regards to the filtering rate of the copepods (p=0.731). Copepods in the GF/Filt 

treatment had significantly lower filtering rates when compared to both the GF and 

GF/Cyan treatments (p=0.024 and p=0.027 respectively). 
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Figure 12- Survivorship of adult Eurytemora affinis during the grazing experiment. GF is only Scenedesmus 

quadricauda, GF/Cyan is S. quadricauda and Microcystis aeruginosa, and GF/Filt is S .quadricauda and M. 

aeruginosa filtrate. Error bars represent +/-1 standard error. 

The average ingestion rate (µgC/copepod/hr) exhibited by E. affinis was the 

lowest in the GF/ Filt treatment, similar to the filtering rate (Figure 11). The copepods 

exposed to the GF/Cyan treatment exhibited the highest average ingestion rate with about 

110 µgC eaten/copepod/hr. The individuals in the GF/Filt treatment had the lowest 

average ingestion rate of about 30 µgC eaten/copepod/hr. The ANOVA analysis 

performed on this set of data indicated that there was a significant effect of treatment 

condition on the ingestion rate of the copepods (F(2,6)= 11.89, p= 0.008; Table 2).  There 

was no significant difference in the ingestion rate of the copepods between the GF and 

GF/Cyan treatments (two-tailed t-test: p=0.18). Copepods in the GF/Filt treatment had a 

Table 2- Summary of ANOVA results for ingestion rate data set. ANOVA performed using Microsoft Excel. 

 

Ingestion Rate 
ANOVA 

      

Source of 
Variation 

SS df MS F P-value F crit 

Between Groups 9386.4 2 4693.2 11.89033 0.008178 5.143253 

Within Groups 2368.244 6 394.7073    

       Total 11754.64 8         
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Figure 13- Average number of eggs per Eurytemora affinis after exposure to the grazing experiment. GF is only 

Scenedesmus quadricauda, GF/Cyan is S. quadricauda and Microcystis aeruginosa, and GF/Filt is 

S.quadricauda and M. aeruginosa filtrate. P-values shown with connecting bars corresponding to compared data 

sets. Error bars represent +/-1 standard error. 

significantly lower ingestion rate than individuals in both the GF and GF/Cyan treatment 

(p=0.023 & p=0.018 respectively).  

It is also important to mention that given the problems of high mortality of E. 

affinis in previous experiments, survivorship in the grazing experiments was measured 

(Figure 12). This was also a check on the presence of any potential confounding factors 

between the treatments. All of the treatments had survivorship rates around 90% or 

above. An ANOVA indicated that there was no significant difference in survivorship 

between the treatments during the grazing period (F(2,6 ) =0.331, p>.05). 

Egg Production Experiments 

The average number of eggs produced per female E.affinis was the highest in the 

GF/Cyan treatment (Figure 13). The females in the GF/Cyan treatment averaged about 15 

eggs per female, but also had the most variation. The GF and GF/Filt treatments had 

similar values regarding the number of eggs produced per female, around 11. An 
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ANOVA Indicated that there was no statistically significant difference between the three 

treatments in the number of eggs produced per female (F(2,32) =1.047, p= .36; Table 3). T-

tests also showed that there was no significant difference between any of the two 

treatments. 

 

The average nauplius size produced did not differ to a high degree between the 

three treatment conditions (Figure 14). The females in the GF/Cyan treatment produced 

the largest nauplii, followed by the GF/Filt treatment and the GF treatment, with 

considerable amounts of variation within each treatment. An ANOVA was performed in 

order to identify significant difference between the three data sets. There was not a 

statistically significant difference between the three treatment conditions (F(2,11)=.377, 

p=.694; Table 4). T-tests also indicated that there was not a significant difference 

between any two of the data sets regarding the size of the nauplii produced. 

Table 3- Summary of ANOVA results for average number of eggs per female data set. ANOVA was done using 

Microsoft Excel. 

Egg Production 
ANOVA 

      

Source of 
Variation 

SS df MS F P-value F crit 

Between Groups 58.7746 2 29.3873 1.04678 0.362779 3.294537 

Within Groups 898.3683 32 28.07401    

       Total 957.1429 34         
 

Table 4- Summary of ANOVA results concerning the average nauplius size data set. ANOVA was done using 

Microsoft Excel. 

Nauplius Size 
ANOVA 

      

Source of 
Variation 

SS df MS F P-value F crit 

Between Groups 2.31E-05 2 1.16E-05 0.377494 0.694125 3.982298 

Within Groups 0.000337 11 3.06E-05    

       Total 0.00036 13         
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Figure 14- Average nauplius size of Eurytemora affinis after exposure to the grazing experiment. GF is only 

Scenedesmus quadricauda, GF/Cyan is S. quadricauda and Microcystis aeruginosa, and GF/Filt is 

S.quadricauda and M. aeruginosa filtrate. P-values shown with connecting bars corresponding to compared data 

sets. Error bars represent +/-1 standard error. 

Average nauplius size (mm) and the number of eggs produced per female are 

negatively correlated in each treatment, with the strongest correlations being seen in the 

GF/Cyan and GF/Filt treatments (Figure 15). Females in the GF/Filt treatment showed 

the largest variation in average nauplius size, while females in the GF/Cyan treatment had 

the largest variation in number of eggs produced. The females in the GF treatment had a 

narrow range of nauplius size as well as number of eggs produced relative to the females 

in the other two treatment conditions. Regression analysis was performed in order to 

assess the degree of correlation between the number of eggs a female produces and the 

size of the offspring. There was the highest/strongest degree of correlation seen in the 

GF/Cyan treatment (R
2
= .85) followed by the GF/Filt treatment (R

2
= .70) and finally by 

the GF treatment which exhibited very little correlation between these two variables (R
2
= 

.06). 
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Figure 15- Average nauplius size of Eurytemora affinis after exposure to the grazing experiment as a function of 

how many eggs were produced. GF is only Scenedesmus quadricauda, GF/Cyan is S. quadricauda and 

Microcystis aeruginosa, and GF/Filt is S.quadricauda and M. aeruginosa filtrate. R
2
 values shown for regression 

analysis. Error bars represent +/-1 standard error. 

DISCUSSION 

Points of Emphasis: 

 Overall, this study provided interesting and compelling results concerning the 

grazing and reproduction ecology of Eurytemora affinis in relation to a toxic strain of 

cyanobacteria, Microcystis aeruginosa, which has been known to be a main contributor to 

HABs. After numerous preliminary experiments aided in the fine tuning of the focal 

experiments, the survivorship of these organisms in an experimental setting improved, 

which was a major caveat and area of concern in previous experiments. An increase in 

the conductivity of the experimental water caused by the algal growth medium was 

suggested as a possible factor affecting E.affinis survivorship based on the results 

obtained. This problem was taken care of using a centrifugation-resuspension technique 

with the cells about 24 hours before experimental set-up and start. The temperature of 
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storage also had an effect on copepod survivorship, and the organisms were kept in an 

environment that supported an optimum level of survivorship. 

 As a brief recap of the results, using the three treatment mixtures for comparison, 

some data sets produced differences while others did not. Filtering rates as well as 

ingestion rates of the copepods were similar in the GF and GF/Cyan treatments but 

significantly lower in the GF/Filt treatment where there were not any Microcystis 

aeruginosa cells available for ingestion (only extracellular toxins and substances in the 

filtrate). On the other hand, there was not any significant difference in the number of eggs 

produced or the size of the nauplii across the three treatments. The high degree of 

variability as well as individual differences in resource allocation and resource 

availability are discussed as possible reasons for the lack of significant differences in egg 

number or offspring size between the treatments.  

As a final component, the existence of a trade-off was analyzed between the 

number of eggs and the size of the offspring. There was strong evidence suggesting that 

this trade-off is most prominent or evident in the GF/Cyan treatment, while not being 

much of a factor in the GF treatment. Given a finite amount of resources possessed by the 

mother Eurytemora affinis, it is reasonable to assume the presence of some sort of 

strategy regarding the allocation of these resources. The trade-off is essentially between 

producing a higher number of smaller offspring or a lower number of large offspring. 

This trade-off can change over time and space and is likely mainly influenced by the 

current environmental conditions (i.e. food availability, predator presence, environmental 

stress, etc.). The most optimal, most effective, and most efficient strategy of resource 
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allocation will be one that increases the fitness of both the mother and future generations 

to the highest degree. 

Grazing Experiment and Related Topics 

Using data from a study involving the effects of size and concentration of food on 

the feeding of Calanus pacificus, a popular marine copepod, it was demonstrated that 

copepods display an ingestion rate which is directly dependent on concentration and size 

of the cell at low food concentrations (Frost, 1972). This feeding rate is constant and 

apparently independent of concentration, size, and type at high concentrations of food. 

The feeding rate typically increases until a saturation point is reached, which can vary 

over time and space and between species. A study by Barthel (1983) that investigated the 

optimal uptake by Eurytemora affinis predicted that copepods fed at a concentration of 

340 µgC/L will grow and feed optimally.  

Originally, the intent was to have 500 µgC/L of Scenedesmus quadricauda and 

10% Microcystis aeruginosa. This would provide for a food concentration that is more 

than enough for optimal feeding and growth. Analysis of food concentration in the 

experimental beakers through cell counts and calculations indicated that the food 

concentrations used during grazing were actually about 300 µgC/L for S. quadricauda 

and about 30 µgC/L for M. aeruginosa. This error was likely due to errors in food 

concentration calculations and additions. Despite this error, the provided amounts of 

food, according to past research, should have been adequate enough to achieve close to a 

saturation point of feeding and to support optimal growth of the copepods (Barthel 1983). 

Survivorship of Eurytemora affinis in all treatments after the grazing experiment 

was around 90%, indicating that the presence and consumption of Microcystis aeruginosa 
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did not affect copepod survival during this short term experiment. Koski et al. (2002) also 

demonstrated that E. affinis is able to survive and reproduce in a planktonic community 

that is dominated by toxic cyanobacteria (during HAB). This study was done using 

populations from the Baltic Sea and the toxic cyanobacteria Nodularia sp., a typical 

pairing of organisms due to their abundance in the Baltic. In contrast to the results 

obtained in this study, another study that used the pairing of Eurytemora affinis from 

Little Sturgeon Bay and Microcystis aeruginosa in one set of experiments and E.affinis 

from the Baltic Sea and Nodularia spumigena found negative effects on survivorship, egg 

production and offspring size as well as reduced grazing rates in both of these 

populations (Dwyer, 2013).  

The results of the grazing experiments suggest that Eurytemora affinis has the 

ability to control and regulate its feeding. In the GF and GF/Cyan treatments the 

copepods exhibited similar grazing rates, but in the GF/Filt treatment condition, the 

copepods drastically reduced both filtering rates and ingestion rates. These results are 

supported by the findings of a study by Dwyer (2013), where the lowest grazing rate 

demonstrated by E.affinis was observed in the treatment involving a good food source 

and Microcystis aeruginosa filtrate. In both the GF/Cyan and GF/Filt treatments there is 

the presence of toxins (microcystin), in the extra-cellular form in the GF/Filt and both 

intra- and extracullular form in the GF/Cyan treatment. The main factor differing 

between these two treatments is the presence of the actual Microcystis aeruginosa cells 

themselves. In the GF and GF/Filt treatments the main factor differing is the presence of 

extracellular microcystin (and possibly other substances) in the GF/Filt treatment. This 

suggests that the copepods are sensing the presence of the toxin, and depending on 
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whether or not the cell is present, they will either repress grazing if the cells are not 

present or continue grazing at a standard rate.  

A previous study by DeMott & Moxter (1991) stated that the inhibition of feeding 

is either an adaptive behavior to avoid eating toxic cells or a direct ramification of a 

weakened condition due to poisoning. If the copepods have the option of benefitting from 

physically ingesting the nutrients provided by the cell, it seems as though they will 

endure/tolerate the toxin exposure and ingestion. On the other hand, if the nutrients of the 

cell are not present and not available for uptake by Eurytemora affinis, there is no benefit 

to grazing at a standard rate, and the grazing rate is reduced. Therefore, the nutrients 

provided by M. aeruginosa may act as a buffer to the effects of the toxin it produces 

when being fed on by E. affinis.  

While other studies have shown that Eurytemora affinis has the ability to 

demonstrate adaptive behavior by decreasing feeding rates when exposed to toxic strain 

of cyanobacteria (Engström-Öst, 2002), the data presented here suggests that this is only 

true if the cyanobacteria cells themselves are not available for ingestion. In other words, 

the alteration of grazing rate is contingent upon the toxins/cyanobacteria cells actually 

being available for feeding and ingestion; if they are present, grazing rate is not 

decreased. It has been suggested that cyanobacteria may possess various elements that are 

essential for grazers (Engström-Öst, 2002). It would be favorable for E. affinis to evolve 

the ability to utilize the nutrients of cyanobacterial cells and could serve as a key driver in 

its ability to outcompete other copepod species that are not capable or not efficient at 

utilizing the cyanobacteria as a potentially beneficial/quality food item. The study by 

Engström-Öst (2002) points out that a cyanobacterial bloom and its related elements 
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could provide as a diverse and highly useful food source for the dominant species of 

copepods in the Baltic Sea. This ability to feed and efficiently utilize the nutrients of the 

cyanobacterial cell may also be a main component influencing the successful invasions of 

freshwater systems by E. affinis. 

Results provide evidence that the copepods in the grazing experiment did not 

selectively feed on either of the strains of food provided. Both Microcystis aeruginosa 

and Scenedesmus quadricauda were fed upon with no indication of selectivity by 

Eurytemora affinis. Other studies, in contrast, have demonstrated that E.affinis does 

selectively feed on certain food sources. It has been demonstrated that E. affinis, when 

presented with a choice of toxic or non-toxic cyanobacteria, preference was shown for the 

non-toxic strain/cells (Engström-Öst, 2002). Other studies have shown that E. affinis is a 

suspension feeder and considered a relatively less selective species of copepod (Jonsson 

and Tiselius, 1990; Gasparini and Castel, 1997). This could explain the evolution of the 

adaptive and efficient use of cyanobacteria (toxic and non-toxic) by E. affinis given that it 

is commonly found in the same spatial area as the typically suspended cyanobacteria.  

It has been proposed by past studies that zooplankton which exhibit selective 

feeding to avoid cyanobacteria tend to have lower physiological tolerance of their toxins 

(DeMott & Moxter, 1991; Kozlowski-Suzuki et al., 2003; Sarnelle and Wilson, 2005). 

This type of behavior is beneficial to the copepods that are not tolerant of the toxin and 

has therefore evolved over time. On the other hand, if a copepod is tolerant of the toxins, 

this type of selective feeding would not be as beneficial because there are no (or very 

limited) negative side effects of ingesting the toxin. This may suggest that E. affinis can 

tolerate the toxins (specifically microcystin-LR) better than other copepods, and therefore 
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it does not selectively feed and can take advantage of the resources and nutrients 

provided by the toxin producing cyanobacterial cells. There would be no benefit of 

feeding on toxic cells, unless the organism was tolerant of this toxin or the nutrients of 

the ingested cell acted as a buffer to the negative consequences of toxin ingestion. Toxin 

tolerance and the ability to derive nutrition from the cells is very advantageous during 

mass-occurrences of cyanobacteria (Engström-Öst, 2002).  

There seem to be two ways that a copepod may be able to distinguish between 

toxic and non-toxic cells: either by recognizing the toxin before ingesting or by learning 

from prior ingestion of a toxic cell and the following avoidance of future ingestion 

(Carlsson et al. 1995). The recognition of the toxin would likely be through sensing 

various extracellular cues released by the toxic cells. Our results suggest this very view, 

that E. affinis has the ability to sense the presence of Microcycstis aeruginosa in the 

environment based on some cue, and can therefore adjust feeding depending on whether 

or not the actual cells are available for ingestion and nutrition. The apparent ability of 

E.affinis to sense the presence of a toxin (versus non-toxin) in the water has been 

demonstrated in other studies (Engström et al. 2000). 

As mentioned, the results suggest that Eurytemora affinis has the ability to sense 

cues in the water that provide information concerning food availability and toxin 

presence. It is likely that the sensing of the Microcystis cells and the related toxins is 

related to the chemosensory capacity of the individual copepod and species. Studies have 

shown that the setae on the first antennae provide copepods with mechano- and 

chemosensory information that can be used in prey detection, predator detection, and 

mate recognition (Griffiths and Frost, 1976; Lenz and Yen, 1993). A study by Lenz et al. 
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(1996) aimed at investigating the sensory specialization along the antennae of a calanoid 

copepod (Pleuromamma xiphias). Their results indicate that there are purely 

mechanoreceptive setae, purely chemoreceptive setae, and mixed-modality setae. The 

setae that are capable of chemoreception are distinguished by the presence of apical pores 

and small sensory dendrites. Using a dye, Lenz and colleagues (1996) demonstrated that 

the chemoreceptive setae have the ability to absorb external substances in the water. 

Their results were inferred from both comparative morphology as well as observed 

behavior. Based on their results, the researchers hypothesized that the function of the 

mixed-modality setae is “gustatory.” This means that the setae can sense particles by 

tasting (chemoreception) and mechanical contact (mechanoreception) combined. As a 

result, it was proposed that these setae may be involved in the acceptance and/or rejection 

of potential food particles which come into physical contact with the first antennae. Our 

results suggest that the ability to sense substances (toxins, food, etc.) in the environment 

was utilized by Eurytemora affinis during the grazing experiments. 

A study by Lehtimaki et al. (1997) demonstrated that the extracellular toxin 

release by cyanobacteria is affected by temperature, light, salinity, growth stage, and 

phosphorous concentration. This shows that extracellular cues in the form of toxins are 

variable, in space and time, and therefore dependence on using extracellular toxins as the 

primary way of recognition may be unreliable. Given this unreliability, the presence of 

the cyanobacteria is likely physically/mechanically sensed as well, by cell capture and/or 

ingestion (Lenz et al., 1996). Subsequent feeding would then be altered or regulated 

given the physically sensed cues. This means that when the copepod captures the given 

cell, it has the ability to recognize it by shape and/or taste. This occurrence would then 
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change the potential for subsequent feeding on this type of cell. If the cell was pleasing to 

the copepod, it would continue eating it in the future. On the other hand, the opposite 

would be true if the cell was not pleasing to the copepod and therefore the copepod would 

avoid feeding on this type of cell in the future. This type of behavior is very difficult to 

establish experimentally and instead needs to be proposed or inferred in many cases. 

The combination of mechanoreceptive and chemoreceptive setae present on the 

copepods and their sensory abilities could account for the results observed in this study. 

In the GF treatment, no toxins were present and therefore there was no cue received by 

the receptive setae on the copepod and no change in feeding behavior. On the other hand, 

in the GF/Cyan and the GF/Filt treatments, there were toxins present and likely sensed by 

the chemoreceptive setae. In the GF/Cyan treatment, it is possible that the cells 

themselves were mechanically sensed but in the GF/Filt treatment there is an absence of 

cells and a lack of availability for ingestion. This could prompt the copepod to continue a 

normal grazing rate in the GF/Cyan treatment since the cells (and its nutrients/resources) 

are available for ingestion while significantly decrease grazing in the GF/Filt treatment 

due to toxin presence and lack of cell availability. Therefore, it may be reasonable to 

suggest that Eurytemora affinis has the ability to use both mechano- and chemoreceptive 

setae to sense food availability and adjust grazing rate accordingly.  

Studies conducted in the San Francisco estuary have focused on the relationship 

between Eurytemora affinis and the toxin, microcystin, produced by Microcystis (Ger et 

al., 2009). Ger and colleagues found that in this environment, it is very rare and unlikely 

to have microcystin at high enough levels to cause significant depletions in survivorship 

of E. affinis. The results of this study indicate that toxicity from dissolved microcystin is 
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not a direct threat to zooplankton of the San Francisco Estuary, and other mechanisms 

such as dietary exposure to Microcystis constitute a more severe risk. The risk of dietary 

exposure to Microcystis was not supported by the findings of our short term study using 

E.affinis from Lake Michigan. 

Another study by Ger et al. (2010) produced some interesting findings concerning 

the effects of Microcystis aeruginosa (and microcystin) on the copepods of the upper San 

Francisco Bay (including E.affinis). This study used strains of Microcystis that produced 

toxins, and strains that did not. Contrary to expectations and findings from other studies, 

Ger and colleagues found that the strain with the toxin did not result in higher mortality 

as compared to the strain without the toxin, suggesting that non-microcystin metabolites 

of Microcystis can negatively affect copepods. This finding is interesting since it seems to 

indicate that negative impacts may not be related to the cellular microcystin concentration 

at all, and therefore any feeding on Microcystis (toxic or non-toxic) cannot be justified. 

Though E. affinis has been shown to feed and survive in the presence of cyanobacteria in 

other studies, this work by Ger seems to suggest otherwise. 

The suggestion of non-microcystin metabolites (released by cyanobacterial cells) 

possibly having a negative effect on copepods by Ger et al. (2010) brings up an 

interesting topic. Is there another way, other than relying on toxin presence, that 

Eurytemora affinis could sense the presence of Micorcystis aeruginosa? This is a very 

difficult topic of research given the nature and complexity of the sensory system and the 

related cues, especially for zooplankton in aquatic ecosystems. Therefore, there does not 

seem to be much scientific evidence for such recognition abilities. As of now it seems 

like there may be other ways that E. affinis could sense the presence of M. aeruginosa, 
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including through sensing various types of metabolites or waste products given off by M. 

aeruginosa cells, but much more work is needed in this field to gain insight into the 

possibility of various or multiple recognition cues. 

As mentioned, Eurytemora affinis is invasive to the Great Lakes system, 

originating in a brackish water environment. It turns out that food concentration was very 

important in the move to freshwater by E. affinis. A recent study conducted by Lee et al. 

(2013) investigated multiple parameters concerning the move to freshwater from brackish 

water by the copepod E. affinis, a process completed by the populations found in Lake 

Michigan. In this study by Lee and colleagues, it was observed that high food 

concentrations significantly increase low-salinity tolerance of E. affinis. Therefore, this 

suggests that ample amounts of food can actually enable freshwater invasions. A 

common feature of HAB and eutrophication is an increase in phytoplankton, including 

mass-occurrences of cyanobacteria. North American Great Lakes, including Lake 

Michigan, tend to be more eutrophic (from anthropogenic nutrient inputs) along the 

coastlines, which is where the originally brackish copepod, E. affinis tends to persist (Lee 

et al. 2013). Overall, it was demonstrated by Lee et al. (2013) that high food 

concentrations could lead to extended ranges and condition-specific competition between 

saline invaders and currently inhabiting freshwater species, serving as a type of equalizer 

between novel and resident species. Although invasions often lead to high levels of 

competition over native species, the gradients that are ever present within aquatic 

ecosystems allows for the co-existence of invaders and current species. The ability to 

feed on Microcystis therefore may have facilitated E. affinis’s move from brackish water 

to the freshwater system of the Great Lakes. 
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Adding the component of competition is always important when analyzing an 

ecological interaction between a primary producer and consumer. Field or natural 

situations where competition is prevalent can be very different than the situations faced in 

isolated lab experiments. One study investigated the species specific differences in the 

ingestion of Microcystis cells by two species of dominant calanoid copepods 

(Eurytemora affinis and Pseudodiaptomus forbesi) from the San Francisco estuary (Ger 

et al. 2010). Results from this study indicate that E. affinis is less efficient at 

avoiding Microcystis than the other copepod used in the experiment. Note that a similar 

comparison also found that E. affinis was relatively inefficient in 

avoiding Nodularia (cyanobacteria) when compared with a raptorial feeding copepod 

(Engström et al., 2000). The researchers suggest that unlike E. affinis, P. forbesi may 

actually promote blooms of Microcystis via highly selective feeding on competing 

phytoplankton species. This high degree of selective feeding can have profound effects 

on the aquatic community and increase the impacts of HABs. Once again, selective 

feeding was not exhibited by E. affinis in this experiment. If E. affinis can effectively 

utilize the nutrients provided by the cyanobacterial cell, then there would be no valid 

reason for avoidance of the cell. This may be why E. affinis was shown to not avoid the 

cyanobacterial cells in the previously discussed studies.  

In relation to competition with other species of copepod, it has been suggested 

through experiments involving Arcatia bifilosa and Eurytemora affinis from the Baltic 

Sea that when food availability is scarce and/or during bloom conditions, that A. bifilosa 

may starve, whereas E.affinis would continue feeding at a low rate (Engström et al. 

2000). A study by Richman et al. (1980) which looked at the grazing interactions among 

http://plankt.oxfordjournals.org/content/32/10/1479.full#ref-6
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four freshwater calanoid copepods found that E. affinis demonstrated the most restricted 

feeding range and rate. According to their findings, E.affinis grazed at an optimally 

efficient level (peak size and bio-volume selection). The presence of varied size-

dependent feeding behaviors among calanoid copepods allows for their coexistence in 

aquatic ecosystems. 

Egg Production Experiment and Related Topics 

The results from our experiments concerning the egg production of female 

Eurytemora affinis exposed to the various food treatment conditions suggest that there 

was essentially no difference in the average number of eggs produced per female or the 

average size of the nauplii. The absence of negative effects on the reproduction of 

E.affinis has been demonstrated and supported by past studies (Engström-Öst, 2002; 

Koski et al., 2002). On the other hand, there has been evidence of negative effects of 

toxic cyanobacteria on E. affinis reproduction (Dwyer, 2013).  

The copepods exposed to the GF/Cyan treatment ingested a relatively high 

amount of the M. aeruginosa cells (and the toxins). The ingestion of these cells and their 

toxins had essentially no effect on egg production or offspring size according to our 

results. This means that despite the diet consisting of Microcystis aeruginosa in the 

GF/Cyan treatment or the presence of M. aeruginosa filtrate in the GF/Filt treatment, 

there was not a negative effect on the reproductive capabilities of the copepods. It may be 

important to mention that the considerable amount of variation within the GF/Cyan and 

GF/Filt may have led to the lack of statistical significance in both of these categories. 

This variation within these two treatments could be a sign of differences in toxin 
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tolerance, resource allocation, and/or recognition abilities between individual copepods, a 

prime component for natural selection and evolution to work on.  

The copepods in the GF/Filt treatment drastically shut down their grazing rates. 

Despite doing so, these copepods were still able to produce a similar amount of eggs and 

offspring that were similar in size to the individuals exposed to the GF and GF/Cyan 

treatments, who showed no reduction in feeding rate. This occurrence suggests that E. 

affinis may have the capability to utilized stored materials for use in maintenance and 

reproduction when food quality is low and or feeding mechanisms are shut down. It is 

also likely that E. affinis would not have evolved to have the ability to shut down feeding 

if there was not some sort of mechanism to combat the low levels of nutrient ingestion 

associated with grazing shutdown (utilization of stored products). It is likely that these 

stored materials are forms of lipids that the copepod can use (if needed, i.e. feeding is 

shut down) in the maintenance of its own physiological needs or, as seen in this study, in 

reproduction and egg production. 

As previously mentioned, the ability to utilize stored resources would be 

beneficial for the copepod, especially while reproducing in an environment with low food 

quality and/or availability. The utilization of stored resources for the purpose of 

reproduction may have been demonstrated in this study given the results obtained in the 

GF/Filt treatment. The copepods exposed to this feeding environment drastically shut 

down their feeding rates and therefore ingestion of nutrients and critical resources used in 

maintenance and reproduction. Despite this lack of resource ingestion, the females still 

produced offspring that were similar in size and quantity to those produced in the other 

two treatments where feeding and ingestion was not shut down. Therefore, the females in 
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the GF/Filt treatment likely allocated similar amounts of resources to offspring/egg 

production as did the females in the other treatments despite the differences in nutrient 

and resource ingestion. This may have occurred through the utilization of stored reserves. 

The storage of lipids by zooplankton has been shown to have an important role in 

reproduction (Tessier & Goulden, 1982; Butler, 1994; Brett & Muller-Navarra, 1997; 

Ackman, 1999; Lee et al., 2006).  Much of the time, these stored lipids are in various 

forms, including triacylglycerols, wax esters and phosopholipids (Lee et al., 2006). It is 

often noted that there are lipid droplets that can be transferred to developing oocytes. 

These studies have found that the yolk in the eggs of zooplankton has high levels of 

lipovitellin, a lipoprotein that females must convert their stored lipids into during 

reproduction. The developing embryos then use this lipovitellin and the lipid droplets for 

growth, energy, membranes and hormones until active feeding begins (Lee and Walker, 

1995). The availability of more yolk and lipids would be an undeniable benefit for any 

developing embryo, especially in a less than favorable environment caused by toxin 

presence, predator presence, or low food. The biochemistry of lipid use and storage is 

beyond the scope of this experiment but there has been work done in this area involving 

calanoid copepods (Sargent & Flak-Petersen, 1981). 

Lee et al. (2006) suggested that before the onset of a spring phytoplankton bloom 

(not necessarily an HAB, but it may be included), many species of zooplankton use 

stored lipids for energy and materials for reproduction. This study by Lee and colleagues 

also states that the occurrence of these phytoplankton blooms may increase the amount of 

lipid reserves that a female has. This means that given the cycles of low food and high 

food, the zooplankton can still reproduce in low food conditions thanks to the ability to 
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store and allocate lipid reserves to developing offspring. This ability may have been 

demonstrated in our study by the female Eurytemora affinis in the GF/Filt treatment who 

shut down feeding but still produced offspring in comparable numbers and sizes to those 

females that did not shut down their feeding. Although not tested, it would be reasonable 

to assume that after the offspring were produced, the females within the GF/Filt treatment 

would have much lower lipid content in storage than the females in the other treatments. 

This would be the effect of the GF/Filt females needing to allocate their reserves to the 

offspring since feeding was shut down. A study by Butler (1994) provides direct support 

for this, stating that individuals could enhance reproduction during periods of unfavorable 

food conditions by utilizing energy stores. 

 The topic of cell content (in terms of quality) with regards to different species of 

phytoplankton brings up an interesting area of research that is slightly beyond the scope 

of this experiment, but may be worth mentioning. It seems that cell content may be 

directly related to the quality of the cell as a food option and the availability of useable 

and beneficial nutrients. Sterner (1994) who looked at algal nutrient limitation and 

nutrition of aquatic herbivores stated that grazers with high nutrient demands are not 

limited by quantity or energy, but by the quality of the food. The quality of this food is 

directly related to the type and quantity of nutrients and mineral elements within the cell 

including carbon, nitrogen, phospohrous, etc. There are numerous other trace elements 

that may differ between phytoplankton cells, making them more or less appealing to 

various types of herbivore grazers, including copepods. Also, note that a previously 

mentioned study by Ger et al. (2010) suggested that non-toxin related metabolites of the 

cyanobacteria might also have an effect on the grazers. The differences in cell content 
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help explain why some types of phytoplankton are more beneficial to grazers than others. 

Previous studies have shown that it is difficult to determine whether it is specifically the 

toxin that is having an effect on the copepod or if it was another substance (i.e. 

metabolites) produced by the cyanobacteria (Suikkanen et al., 2006). The cell content and 

its nutritional quality may also be related to the sensory capacity of Eurytemora affinis, a 

topic that was previously discussed. 

 As covered in the introduction of this study, the low food quality has mainly been 

associated with the cyanobacteria’s difficult-to-handle morphology, low nutritional 

quality, and toxin content (Porter and Orcutt, 1980; Lampert, 1987; Kirk & Gilbert, 

1992). This lack of nutritional quality seems to be linked to the cyanobacteria lacking 

essential compounds such as polyunsaturated fatty acids (Holm & Shapiro, 1984). These 

findings regarding cyanobacteria and food quality are generalized to the entire class, and 

it must be kept in mind that these factors and effects are dependent on space, time, and 

the consumer. Meyer-Harms et al. (1999) suggested that cyanobacteria can provide a 

valuable food source for specialized consumers and allow for this specialist to be 

successful in a community dominated by cyanobacteria. This type of specialization could 

be exhibited by Eurytemora affinis in relation to Microcystis aeruginosa in this 

environment (Lake Michigan). This would account for E. affinis feeding on the 

cyanobacterial cells when they were present and the cell’s nutrients were available for 

ingestion and utilization. 

As it has been mentioned, this experiment represents a short term study that 

attempts to gain information about a complex ecological relationship that is likely 

dependent on time in some way. In a study that looked at a slightly longer time period (5 
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days) of cyanobacteria exposure, showed that E. affinis had increased mortality, declines 

in egg production and hatching success (Koski et al., 1999). In contrast to other studies, 

including my own, the study by Koski et al. suggested that E. affinis is not able to 

reproduce on a diet of cyanobacteria (Nodularia sp.). Surprisingly, this effect was 

irrespective of the toxicity of the Nodularia cells and therefore, the nutritional quality of 

this cyanobacteria is not sufficient in maintenance and egg production, although negative 

effects of nodularin on egg sacs (deformations) was noted in this study. Though they 

share some similarities, it is important to distinguish the types of cyanobacteria used in 

the study by Koski et al. (1999) and the type used in this present study. Nodularia is a 

filamentous cyanobacteria while Microcystis is not. This difference in form combined 

with the difference in cell content between the two species may account for the difference 

in findings. 

Trade-off: More or Less? 

Given a limited and finite amount of resources to allocate, it is reasonable to 

assume that a trade-off between the number and size of offspring exists in nature. 

According to the Lacks competitive clutch hypothesis there is an inverted U-shape for the 

quantity, survival, and fitness of offspring in relation to clutch size (Stearns, 1992). The 

Reproductive Effort Model suggests that there are decreasing returns from reproductive 

investments which leads to intermediate levels of reproductive effort by parents. The 

evidence available strongly supports that organisms flexibly adjust their reproduction to 

optimize individual fitness (current and future offspring potential). 

An interesting aspect that was analyzed in this study was the potential trade-off 

present between the number of eggs produced and size of offspring. This trade-off mainly 
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deals with the allocation of resources by the Eurytemora affinis to various physiological 

aspects (growth, reproduction, etc.). It is accepted that the quality and size of offspring 

produced are positively correlated, so larger offspring represent a better quality (more 

strong and tolerant) (Stearns, 1992). According to our results there was a strong trade-off 

present in the GF/Cyan treatment, a slightly weaker correlation in the GF/Filt treatment, 

and essentially no correlation between offspring size and number of eggs produced in the 

GF treatment. It seems as though given the presence of a good food source and a quality 

environment (toxin-free), as in the GF treatment, there is no need for the copepods to 

allocate high amounts of resources to investment in offspring quantity or quality (size). 

On the other hand, in the less than favorable environments of the GF/Cyan and GF/Filt, 

there was a trade-off between quantity and quality. This seems reasonable that the 

copepods would rather produce a low number of high quality and resilient offspring when 

in a less than optimal/favorable environment. Instead of investing resources in the quality 

of the offspring, the individual might also produce a high number of offspring, betting on 

the chance that at least a few of them would survive. In both cases, the copepod has the 

interest of maximizing its own fitness and does so through the control of resource 

allocation. In the GF/Filt treatment especially, there were two individuals that exhibited 

the lower number but higher quality (larger) offspring approach, whereas the other two 

individuals had similar number and sizes of offspring as those in the GF treatment.  

In the GF/Cyan treatment, much like the trend seen in the GF/Filt treatment, there 

were two individuals that exhibited one of the resource allocation techniques previously 

discussed and two that exhibited the other. There was a clear difference in the strategy of 

resource allocation between the individuals within each treatment. Half of the individuals 
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opted for the production of less but higher quality (larger) offspring approach, while the 

other half exhibited the more but less quality (smaller) offspring approach. These stark 

differences exhibited between individuals in relation to resource use and allocation is the 

exact component that natural selection and evolution work on. 

Although the general trend of a lower number of larger or a higher number of 

smaller offspring is exhibited by the individuals in the GF/Cyan treatment, it is 

interesting to note the quantity and size in relation to the eggs and offspring produced in 

the other treatments. Keep in mind that the grazing rates for the individuals in the GF/Filt 

treatment were much lower than the individuals in the GF/Cyan treatment. The 

individuals’ from the GF/Filt treatment likely had less or a lower quality of resources 

(likely stored resources) to allocate towards reproduction and egg production. On the 

other hand, the individuals from the GF/Cyan treatment did not reduce grazing rates and 

likely had an ample amount of resources to allocate to reproduction and egg production. 

This will help explain why a few individuals in the GF/Cyan treatment produced many 

more offspring of the same size as those in the GF/Filt treatment. The size and number of 

offspring are relatively comparable between GF and GF/Filt while the individuals from 

the GF/Cyan treatment either produced a higher quantity offspring of the same size as 

those produced in the other two treatments or a similar quantity but larger in size. This 

also suggests that the individuals within the GF/Cyan treatment had an ample stock of 

nutrients and had the ability to allocate more resources to offspring to make them higher 

in number or larger in size within a toxic environment and increase their chance of 

survival (increases in fitness). 
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Van Noordwijk and De Jong (1986) also attempt to explain this trade-off 

embedded within the reproduction process. They state that if producing one additional 

offspring reduces future reproduction by more than one individual, then this additional 

offspring is not selected for. Therefore, though it may seem a bit counter intuitive, an 

individual can have an increase in fitness from fewer offspring. The variation of 

resources available to individuals across time and space helps explain why it may be 

difficult to observe these trade-offs within an entire population. Tessie and Consolatti 

(1991) analyzed resource quantity and offspring quality and found direct evidence in 

zooplankton that the adaptive plasticity in reproduction is related to resource availability 

and environmental circumstances. Our results seem to support this claim given the high 

degree of plasticity and variation shown in the GF/Cyan treatment condition which had 

the most food available for consumption and was in an environment with the highest 

toxin levels. 

Difficulties & Future Experiments 

As with any scientific experiment, it is always important to realize potential 

confounding factors or problems with the experiment itself. Bringing these factors and 

problems into focus and making improvements or controlling for them will allow for 

more efficient and effective experiments in the future. Throughout the experimental 

process careful considerations were taken when considering potential factors (those other 

than the feeding conditions) that may affect the living organism. Some of these factors 

were worked through using preliminary experiments (i.e. the high conductivity from the 

algal growth medium). The animals were picked randomly and allocated to the beaker 

and treatment conditions. The beakers were placed in a similar environment within the 
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lab and placed in no particular order to account for any spatial factors present that may 

affect the beakers (light, temperature, airflow etc.). These confounding factors were 

controlled for to the best of our abilities and are likely not a large factor in this 

experiment. 

A few problems did occur throughout this experiment. As mentioned at the start 

of the grazing discussion section, the food concentrations were lower than intended. We 

aimed to produce food concentrations of about 500 µgC/L, but in reality when checked, 

the concentrations were around 300 µgC/L. This was not thought to have been an issue 

given that previous studies indicated that Eurytemora affinis obtain an optimal growth 

rate at about 340 µgC/L (Barthel, 1983).  

Regarding the calculation of the grazing rates, it is typical to use more than one 

method. In this study we used cell counts to calculate the grazing rates and attempted to 

use Chla composition to do so as well. Unfortunately, the Chla analysis did not provide 

reliable data and was not able to be used. This is likely due to an error in the extraction 

method and/or a lack of sensitivity related to the spectrophotometer or cuvette given the 

somewhat dilute food concentrations and the size of the sample used for analysis (5-

10ml). It would be useful to have two different indications of the grazing rates of the 

copepods and this problem of sensitivity or Chla extraction procedure should be altered 

for future experiments.  

Although the problem related to survivorship was addressed by using information 

provided by preliminary experiments, there were still periods of considerable mortality 

when collecting and storing the organisms for future use. Many of the females produced 

eggs, but there were numerous females and egg sacs that began to decompose before they 
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were allowed to hatch. As decomposition started, Lugol’s solution was added 

immediately in order to obtain data for the number of eggs produced, but the offspring 

size was not attainable in some cases. It is unknown what the exact cause of this 

decomposition and lack of hatching was, but this problem should be addressed in future 

experiments. 

This study also provides a pathway for future experiments. It would always be 

more interesting, representative, and indicative of real-world situations if experiments be 

run on a longer term basis. Sometimes there can be stark differences in the short term and 

long term effects of such ecological factors. It is, without a doubt, more useful to 

investigate the long term effects of these interactions present in nature given that the 

process of natural selection and adaptation in general occur over a long time period. 

Using different combinations of food concentrations and food types would also be 

interesting. Given the large difference seen in this study between the GF/Cyan and 

GF/Filt treatments, it may be interesting to add an intermediate feeding condition to the 

experiment. Food limited situations could also be implemented into future experimental 

design and could produce different affects compared to a non-food limited environment. 

The addition of various types of organisms and foods allows for greater comparisons 

between species and or populations from both similar and different environments. 

One could also take an approach that investigates the molecular and biochemical 

related interactions between the toxins produced by cyanobacteria and its effect on the 

consumers. This experiment did not go into much detail about this topic so gaining more 

insight about the details of these types of ecological interactions and their effects on the 

individual organism from a cellular view could be very beneficial for future experiments. 
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On the other hand, studies similar to this one may also shift more into the evolutionary 

view, looking across or between populations over a given amount of time. This could be 

beneficial for future experiments as well and could provide valuable insight into the 

future fates of various species and ecological interactions. 

Overall, the variability and complex interdependent factors in aquatic ecosystems 

combined with the differences in response by individuals’ leads to complications in 

analyzing these types of ecological interactions. As seen throughout the introduction and 

discussion of this experiment, there seems to be no real consensus or generalizable 

pattern available within the literature regarding the effects of cyanobacteria on 

zooplankton. This makes conducting and discussing these types of studies difficult at 

times. It is likely that these interactions are dependent on space, time, as well as the 

players (predator and prey). Therefore, it is crucial that more work be done in an attempt 

to gain knowledge and understanding about these specific and complex ecological 

interactions between producers and consumers. 

Implications and Conclusions 

There are many implications of this study that investigated the grazing and 

reproduction ecology of a copepod that is invasive to the Great Lakes region by paring it 

with a toxin producing cyanobacteria that is known to produce HABs within the aquatic 

ecosystem of interest. There are behavioral implications indicated by the results of the 

grazing experiment. These behaviors are adapted over time and essentially shaped by 

natural selection and evolution. The egg production section of this study gives indication 

of the possible long term effects of being exposed to a toxic cyanobacterial diet and how 

they influence an organism’s fitness. The fact that the HABs themselves are a product of 
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eutrophication and global climate change make them an environmental concern in many 

areas. Gaining more knowledge about HABs could have many environmental and 

management implications. As with any study that investigates an interaction between a 

primary producer and consumer within an ecosystem, there are numerous implications 

that can reach higher trophic levels within the food web. Given the fact that the copepods 

ingested the toxin, microcystin, and that toxin ingestion has been suggested as a vector 

for spread throughout the food web, this ingestion of the cyanobacteria may affect other 

organisms that may not be tolerant to the toxin (Lehtinimi et al. 2002). Although, it is 

important to realize that the overall effects on these organisms may be stronger in nature 

and over time (through multiple generations), it is important to use scientific studies to 

gain more insight regarding the ecological, cellular, biochemical, evolutionary, 

environmental implications of such ecological interactions.  

 In conclusion, this study provides for interesting parameters of analysis given the 

results obtained. The results of this study indicate that Eurytemora affinis has the ability 

to adjust its feeding rate in relation to the food environment. Microcystis aeruginosa may 

be a beneficial food source for E. affinis as long as the cells themselves are available for 

ingestion. This may suggest that E.affinis is specialized to recognize, (likely through 

sensory capabilities in the antennae) ingest, and utilize the nutrients provided by the 

cyanobacteria M .aeruginosa. This could provide many for many benefits in certain food 

conditions and allow for this copepod to invade and outcompete other species that may be 

negatively affected by the cyanobacteria. This is likely a key component to the invasion 

of certain aquatic environments by E. affinis. 
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Even though feeding was shut down within the GF/Filt treatment, there was no 

significant difference in the number or size of offspring produced between the treatments. 

This could suggest that E. affinis could have the ability to utilize stored reserves for egg 

production even when ingestion is low, another factor that could be important for 

invasion and outcompeting other species of copepods in less than favorable food 

conditions. The results also suggest a trade-off present in reproduction regarding the 

number and size of offspring given finite resources for allocation. This trade-off was very 

evident in the treatments containing the M. aeruginosa cells and filtrate, suggesting that 

more attention is given to this trade-off and resource allocation in less than favorable 

environments (toxins and poor or low food availability).  

By investigating multiple parameters including feeding behavior, resource 

allocation, egg production, and offspring production this study provides valuable 

knowledge concerning the ecological interaction between Eurytemora affinis and 

Microcystis aeruginosa. This study has important implications that reach to multiple 

fields of science. 
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